Power Output Prediction of Wave Farms Using Fully Connected Networks

dc.contributor.author Burramukku, Bhavana
dc.contributor.author Ceylan, Oguzhan
dc.contributor.author Neshat, Mehdi
dc.date.accessioned 2023-10-19T15:11:50Z
dc.date.available 2023-10-19T15:11:50Z
dc.date.issued 2021
dc.description 56th International Universities Power Engineering Conference (UPEC) - Powering Net Zero Emissions -- AUG 31-SEP 03, 2021 -- Teesside Univ, ELECTR NETWORK en_US
dc.description.abstract One of the most important factors in the amount of power generated by a wave farm is the Wave Energy Converters (WECs) arrangement along with the usual wave conditions. Therefore, forming an appropriate arrangement of WECs in an array is a significant parameter in maximizing power absorption. This paper focuses on developing a fully connected neural model in order to predict the total power output of a wave farm based on the placement of the converters, derived from the four real wave scenarios on the southern coast of Australia. The applied converter model is a fully submerged three-tether converter called CETO. Data collected from the test sites is used to design a neural model for predicting the wave farm's power output produced. A precise analysis of the WEC placement is investigated to reveal the amount of power generated by the wave farms on the test site. We finally proposed a suitable configuration of a fully connected neural model to forecast the power output with high accuracy. en_US
dc.description.sponsorship IEEE,IEEE United Kingdom & Ireland Sect,IEEE Power & Energy Soc,Inst Engn & Technol,Lucas Nulle,MDPI, Elect Journal,MDPI, Energies Journal en_US
dc.identifier.doi 10.1109/UPEC50034.2021.9548274 en_US
dc.identifier.isbn 978-1-6654-4389-0
dc.identifier.scopus 2-s2.0-85116699313 en_US
dc.identifier.uri https://doi.org/10.1109/UPEC50034.2021.9548274
dc.identifier.uri https://hdl.handle.net/20.500.12469/5243
dc.language.iso en en_US
dc.publisher IEEE en_US
dc.relation.ispartof 2021 56th International Universities Power Engineering Conference (Upec 2021): Powering Net Zero Emissions en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Neural-Networks
dc.subject Ocean wave energy en_US
dc.subject wave energy converters en_US
dc.subject Neural-Networks En_Us
dc.subject artificial neural networks en_US
dc.subject Absorption
dc.subject fully connected neural networks en_US
dc.subject Absorption En_Us
dc.subject forecasting model en_US
dc.title Power Output Prediction of Wave Farms Using Fully Connected Networks en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.collaboration.industrial false
gdc.description.departmenttemp [Burramukku, Bhavana; Neshat, Mehdi] Univ Adelaide, Sch Comp Sci, Adelaide, SA, Australia; [Ceylan, Oguzhan] Kadir Has Univ, Management Informat Syst Dept, Istanbul, Turkey; [Neshat, Mehdi] Torrens Univ Australia, Ctr Artificial Intelligence Res & Optimizat, Brisbane, Qld 4006, Australia en_US
gdc.description.endpage 6
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.startpage 1
gdc.identifier.openalex W3204177490
gdc.identifier.wos WOS:000723608400121 en_US
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 1.0
gdc.oaire.influence 2.7795113E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Neural-Networks
gdc.oaire.keywords forecasting model
gdc.oaire.keywords fully connected neural networks
gdc.oaire.keywords Ocean wave energy
gdc.oaire.keywords wave energy converters
gdc.oaire.keywords artificial neural networks
gdc.oaire.keywords Absorption
gdc.oaire.popularity 2.884427E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration International
gdc.openalex.fwci 0.17269191
gdc.openalex.normalizedpercentile 0.51
gdc.opencitations.count 1
gdc.plumx.mendeley 4
gdc.plumx.scopuscites 1
gdc.scopus.citedcount 1
gdc.virtual.author Ceylan, Oğuzhan
gdc.wos.citedcount 0
relation.isAuthorOfPublication b80c3194-906c-4e78-a54c-e3cd1effc970
relation.isAuthorOfPublication.latestForDiscovery b80c3194-906c-4e78-a54c-e3cd1effc970
relation.isOrgUnitOfPublication ff62e329-217b-4857-88f0-1dae00646b8c
relation.isOrgUnitOfPublication acb86067-a99a-4664-b6e9-16ad10183800
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery ff62e329-217b-4857-88f0-1dae00646b8c

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
5243.pdf
Size:
1.16 MB
Format:
Adobe Portable Document Format
Description:
Tam Metin / Full Text