Power Output Prediction of Wave Farms Using Fully Connected Networks

dc.contributor.authorCeylan, Oğuzhan
dc.contributor.authorCeylan, Oguzhan
dc.contributor.authorNeshat, Mehdi
dc.date.accessioned2023-10-19T15:11:50Z
dc.date.available2023-10-19T15:11:50Z
dc.date.issued2021
dc.department-temp[Burramukku, Bhavana; Neshat, Mehdi] Univ Adelaide, Sch Comp Sci, Adelaide, SA, Australia; [Ceylan, Oguzhan] Kadir Has Univ, Management Informat Syst Dept, Istanbul, Turkey; [Neshat, Mehdi] Torrens Univ Australia, Ctr Artificial Intelligence Res & Optimizat, Brisbane, Qld 4006, Australiaen_US
dc.description56th International Universities Power Engineering Conference (UPEC) - Powering Net Zero Emissions -- AUG 31-SEP 03, 2021 -- Teesside Univ, ELECTR NETWORKen_US
dc.description.abstractOne of the most important factors in the amount of power generated by a wave farm is the Wave Energy Converters (WECs) arrangement along with the usual wave conditions. Therefore, forming an appropriate arrangement of WECs in an array is a significant parameter in maximizing power absorption. This paper focuses on developing a fully connected neural model in order to predict the total power output of a wave farm based on the placement of the converters, derived from the four real wave scenarios on the southern coast of Australia. The applied converter model is a fully submerged three-tether converter called CETO. Data collected from the test sites is used to design a neural model for predicting the wave farm's power output produced. A precise analysis of the WEC placement is investigated to reveal the amount of power generated by the wave farms on the test site. We finally proposed a suitable configuration of a fully connected neural model to forecast the power output with high accuracy.en_US
dc.description.sponsorshipIEEE,IEEE United Kingdom & Ireland Sect,IEEE Power & Energy Soc,Inst Engn & Technol,Lucas Nulle,MDPI, Elect Journal,MDPI, Energies Journalen_US
dc.identifier.citation0
dc.identifier.doi10.1109/UPEC50034.2021.9548274en_US
dc.identifier.isbn978-1-6654-4389-0
dc.identifier.scopus2-s2.0-85116699313en_US
dc.identifier.scopusqualityN/A
dc.identifier.urihttps://doi.org/10.1109/UPEC50034.2021.9548274
dc.identifier.urihttps://hdl.handle.net/20.500.12469/5243
dc.identifier.wosWOS:000723608400121en_US
dc.identifier.wosqualityN/A
dc.khas20231019-WoSen_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartof2021 56th International Universities Power Engineering Conference (Upec 2021): Powering Net Zero Emissionsen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectNeural-NetworksEn_Us
dc.subjectOcean wave energyen_US
dc.subjectAbsorptionEn_Us
dc.subjectwave energy convertersen_US
dc.subjectartificial neural networksen_US
dc.subjectNeural-Networks
dc.subjectfully connected neural networksen_US
dc.subjectAbsorption
dc.subjectforecasting modelen_US
dc.titlePower Output Prediction of Wave Farms Using Fully Connected Networksen_US
dc.typeConference Objecten_US
dspace.entity.typePublication
relation.isAuthorOfPublicationb80c3194-906c-4e78-a54c-e3cd1effc970
relation.isAuthorOfPublication.latestForDiscoveryb80c3194-906c-4e78-a54c-e3cd1effc970

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
5243.pdf
Size:
1.16 MB
Format:
Adobe Portable Document Format
Description:
Tam Metin / Full Text