Power Output Prediction of Wave Farms Using Fully Connected Networks
| dc.contributor.author | Burramukku, Bhavana | |
| dc.contributor.author | Ceylan, Oguzhan | |
| dc.contributor.author | Neshat, Mehdi | |
| dc.date.accessioned | 2023-10-19T15:11:50Z | |
| dc.date.available | 2023-10-19T15:11:50Z | |
| dc.date.issued | 2021 | |
| dc.description | 56th International Universities Power Engineering Conference (UPEC) - Powering Net Zero Emissions -- AUG 31-SEP 03, 2021 -- Teesside Univ, ELECTR NETWORK | en_US |
| dc.description.abstract | One of the most important factors in the amount of power generated by a wave farm is the Wave Energy Converters (WECs) arrangement along with the usual wave conditions. Therefore, forming an appropriate arrangement of WECs in an array is a significant parameter in maximizing power absorption. This paper focuses on developing a fully connected neural model in order to predict the total power output of a wave farm based on the placement of the converters, derived from the four real wave scenarios on the southern coast of Australia. The applied converter model is a fully submerged three-tether converter called CETO. Data collected from the test sites is used to design a neural model for predicting the wave farm's power output produced. A precise analysis of the WEC placement is investigated to reveal the amount of power generated by the wave farms on the test site. We finally proposed a suitable configuration of a fully connected neural model to forecast the power output with high accuracy. | en_US |
| dc.description.sponsorship | IEEE,IEEE United Kingdom & Ireland Sect,IEEE Power & Energy Soc,Inst Engn & Technol,Lucas Nulle,MDPI, Elect Journal,MDPI, Energies Journal | en_US |
| dc.identifier.doi | 10.1109/UPEC50034.2021.9548274 | en_US |
| dc.identifier.isbn | 978-1-6654-4389-0 | |
| dc.identifier.scopus | 2-s2.0-85116699313 | en_US |
| dc.identifier.uri | https://doi.org/10.1109/UPEC50034.2021.9548274 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12469/5243 | |
| dc.language.iso | en | en_US |
| dc.publisher | IEEE | en_US |
| dc.relation.ispartof | 2021 56th International Universities Power Engineering Conference (Upec 2021): Powering Net Zero Emissions | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Neural-Networks | |
| dc.subject | Ocean wave energy | en_US |
| dc.subject | wave energy converters | en_US |
| dc.subject | Neural-Networks | En_Us |
| dc.subject | artificial neural networks | en_US |
| dc.subject | Absorption | |
| dc.subject | fully connected neural networks | en_US |
| dc.subject | Absorption | En_Us |
| dc.subject | forecasting model | en_US |
| dc.title | Power Output Prediction of Wave Farms Using Fully Connected Networks | en_US |
| dc.type | Conference Object | en_US |
| dspace.entity.type | Publication | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::conference output | |
| gdc.collaboration.industrial | false | |
| gdc.description.departmenttemp | [Burramukku, Bhavana; Neshat, Mehdi] Univ Adelaide, Sch Comp Sci, Adelaide, SA, Australia; [Ceylan, Oguzhan] Kadir Has Univ, Management Informat Syst Dept, Istanbul, Turkey; [Neshat, Mehdi] Torrens Univ Australia, Ctr Artificial Intelligence Res & Optimizat, Brisbane, Qld 4006, Australia | en_US |
| gdc.description.endpage | 6 | |
| gdc.description.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
| gdc.description.startpage | 1 | |
| gdc.identifier.openalex | W3204177490 | |
| gdc.identifier.wos | WOS:000723608400121 | en_US |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 1.0 | |
| gdc.oaire.influence | 2.7795113E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.keywords | Neural-Networks | |
| gdc.oaire.keywords | forecasting model | |
| gdc.oaire.keywords | fully connected neural networks | |
| gdc.oaire.keywords | Ocean wave energy | |
| gdc.oaire.keywords | wave energy converters | |
| gdc.oaire.keywords | artificial neural networks | |
| gdc.oaire.keywords | Absorption | |
| gdc.oaire.popularity | 2.884427E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.openalex.collaboration | International | |
| gdc.openalex.fwci | 0.17269191 | |
| gdc.openalex.normalizedpercentile | 0.51 | |
| gdc.opencitations.count | 1 | |
| gdc.plumx.mendeley | 4 | |
| gdc.plumx.scopuscites | 1 | |
| gdc.scopus.citedcount | 1 | |
| gdc.virtual.author | Ceylan, Oğuzhan | |
| gdc.wos.citedcount | 0 | |
| relation.isAuthorOfPublication | b80c3194-906c-4e78-a54c-e3cd1effc970 | |
| relation.isAuthorOfPublication.latestForDiscovery | b80c3194-906c-4e78-a54c-e3cd1effc970 | |
| relation.isOrgUnitOfPublication | ff62e329-217b-4857-88f0-1dae00646b8c | |
| relation.isOrgUnitOfPublication | acb86067-a99a-4664-b6e9-16ad10183800 | |
| relation.isOrgUnitOfPublication | b20623fc-1264-4244-9847-a4729ca7508c | |
| relation.isOrgUnitOfPublication.latestForDiscovery | ff62e329-217b-4857-88f0-1dae00646b8c |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- 5243.pdf
- Size:
- 1.16 MB
- Format:
- Adobe Portable Document Format
- Description:
- Tam Metin / Full Text
