Power Output Prediction of Wave Farms Using Fully Connected Networks
dc.contributor.author | Ceylan, Oğuzhan | |
dc.contributor.author | Ceylan, Oguzhan | |
dc.contributor.author | Neshat, Mehdi | |
dc.date.accessioned | 2023-10-19T15:11:50Z | |
dc.date.available | 2023-10-19T15:11:50Z | |
dc.date.issued | 2021 | |
dc.department-temp | [Burramukku, Bhavana; Neshat, Mehdi] Univ Adelaide, Sch Comp Sci, Adelaide, SA, Australia; [Ceylan, Oguzhan] Kadir Has Univ, Management Informat Syst Dept, Istanbul, Turkey; [Neshat, Mehdi] Torrens Univ Australia, Ctr Artificial Intelligence Res & Optimizat, Brisbane, Qld 4006, Australia | en_US |
dc.description | 56th International Universities Power Engineering Conference (UPEC) - Powering Net Zero Emissions -- AUG 31-SEP 03, 2021 -- Teesside Univ, ELECTR NETWORK | en_US |
dc.description.abstract | One of the most important factors in the amount of power generated by a wave farm is the Wave Energy Converters (WECs) arrangement along with the usual wave conditions. Therefore, forming an appropriate arrangement of WECs in an array is a significant parameter in maximizing power absorption. This paper focuses on developing a fully connected neural model in order to predict the total power output of a wave farm based on the placement of the converters, derived from the four real wave scenarios on the southern coast of Australia. The applied converter model is a fully submerged three-tether converter called CETO. Data collected from the test sites is used to design a neural model for predicting the wave farm's power output produced. A precise analysis of the WEC placement is investigated to reveal the amount of power generated by the wave farms on the test site. We finally proposed a suitable configuration of a fully connected neural model to forecast the power output with high accuracy. | en_US |
dc.description.sponsorship | IEEE,IEEE United Kingdom & Ireland Sect,IEEE Power & Energy Soc,Inst Engn & Technol,Lucas Nulle,MDPI, Elect Journal,MDPI, Energies Journal | en_US |
dc.identifier.citation | 0 | |
dc.identifier.doi | 10.1109/UPEC50034.2021.9548274 | en_US |
dc.identifier.isbn | 978-1-6654-4389-0 | |
dc.identifier.scopus | 2-s2.0-85116699313 | en_US |
dc.identifier.scopusquality | N/A | |
dc.identifier.uri | https://doi.org/10.1109/UPEC50034.2021.9548274 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12469/5243 | |
dc.identifier.wos | WOS:000723608400121 | en_US |
dc.identifier.wosquality | N/A | |
dc.khas | 20231019-WoS | en_US |
dc.language.iso | en | en_US |
dc.publisher | IEEE | en_US |
dc.relation.ispartof | 2021 56th International Universities Power Engineering Conference (Upec 2021): Powering Net Zero Emissions | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Neural-Networks | En_Us |
dc.subject | Ocean wave energy | en_US |
dc.subject | Absorption | En_Us |
dc.subject | wave energy converters | en_US |
dc.subject | artificial neural networks | en_US |
dc.subject | Neural-Networks | |
dc.subject | fully connected neural networks | en_US |
dc.subject | Absorption | |
dc.subject | forecasting model | en_US |
dc.title | Power Output Prediction of Wave Farms Using Fully Connected Networks | en_US |
dc.type | Conference Object | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | b80c3194-906c-4e78-a54c-e3cd1effc970 | |
relation.isAuthorOfPublication.latestForDiscovery | b80c3194-906c-4e78-a54c-e3cd1effc970 |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- 5243.pdf
- Size:
- 1.16 MB
- Format:
- Adobe Portable Document Format
- Description:
- Tam Metin / Full Text