On minimum vertex bisection of random d-regular graphs

dc.authorscopusid7401603758
dc.authorscopusid55630908700
dc.authorscopusid56211714900
dc.authorscopusid59141878800
dc.contributor.authorDiaz, Josep
dc.contributor.authorDiner, Oznur Yasar
dc.contributor.authorSerna, Maria
dc.contributor.authorSerra, Oriol
dc.date.accessioned2024-06-23T21:36:48Z
dc.date.available2024-06-23T21:36:48Z
dc.date.issued2024
dc.departmentKadir Has Universityen_US
dc.department-temp[Serna, Maria] Barcelona TECH, Comp Sci Dept, ALBCOM Res Grp, Univ Politecn Catalunya, Barcelona, Spain; [Diner, Oznur Yasar] Kadir Has Univ, Comp Engn Dept, Istanbul, Turkiye; [Diaz, Josep; Diner, Oznur Yasar; Serra, Oriol] Barcelona TECH, Math Dept, Univ Politecn Catalunya, Barcelona, Spain; [Diaz, Josep; Serna, Maria; Serra, Oriol] Barcelona TECH, Inst Matemat, Univ Politecn Catalunya, Barcelona, Spainen_US
dc.description.abstractMinimum vertex bisection is a graph partitioning problem in which the aim is to find a partition of the vertices into two equal parts that minimizes the number of vertices in one partition set that have a neighbor in the other set. In this work we are interested in providing asymptotically almost surely upper bounds on the minimum vertex bisection of random d -regular graphs, for constant values of d . Our approach is based on analyzing a greedy algorithm by using the differential equation method. In this way, we obtain the first known non -trivial upper bounds for the vertex bisection number in random regular graphs. The numerical approximations of these theoretical bounds are compared with the emprical ones, and with the lower bounds from Kolesnik and Wormald (2014) [30]. (c) 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).en_US
dc.description.sponsorshipSpanish Agencia Estatal de Investigacion [PID2020-13082GB-I00, PID2020-112581GB-C21]; Scientific and Technological Research Council Tuebitak [BIDEB 2219-1059B191802095]; Kadir Has University [2018-BAP-08]en_US
dc.description.sponsorshipJ. Diaz and M. Serna were partially supported by the Spanish Agencia Estatal de Investigacion under project MOTION, PID2020-112581GB-C21. O.Y. Diner was partially supported by the Scientific and Technological Research Council Tuebitak under project BIDEB 2219-1059B191802095 and by Kadir Has University under project 2018-BAP-08. O. Serra research was supported by the Spanish Agencia Estatal de Investigacion under project CONTREWA, PID2020-13082GB-I00.en_US
dc.identifier.citation0
dc.identifier.doi10.1016/j.jcss.2024.103550
dc.identifier.issn0022-0000
dc.identifier.issn1090-2724
dc.identifier.scopus2-s2.0-85194072135
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.jcss.2024.103550
dc.identifier.urihttps://hdl.handle.net/20.500.12469/5643
dc.identifier.volume144en_US
dc.identifier.wosWOS:001247310900002
dc.identifier.wosqualityQ3
dc.language.isoenen_US
dc.publisherAcademic Press inc Elsevier Scienceen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectVertex bisection numberen_US
dc.subjectRandom regular graphsen_US
dc.subjectDifferential equations methoden_US
dc.titleOn minimum vertex bisection of random d-regular graphsen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files