On minimum vertex bisection of random d-regular graphs
dc.authorscopusid | 7401603758 | |
dc.authorscopusid | 55630908700 | |
dc.authorscopusid | 56211714900 | |
dc.authorscopusid | 59141878800 | |
dc.contributor.author | Diaz, Josep | |
dc.contributor.author | Diner, Oznur Yasar | |
dc.contributor.author | Serna, Maria | |
dc.contributor.author | Serra, Oriol | |
dc.date.accessioned | 2024-06-23T21:36:48Z | |
dc.date.available | 2024-06-23T21:36:48Z | |
dc.date.issued | 2024 | |
dc.department | Kadir Has University | en_US |
dc.department-temp | [Serna, Maria] Barcelona TECH, Comp Sci Dept, ALBCOM Res Grp, Univ Politecn Catalunya, Barcelona, Spain; [Diner, Oznur Yasar] Kadir Has Univ, Comp Engn Dept, Istanbul, Turkiye; [Diaz, Josep; Diner, Oznur Yasar; Serra, Oriol] Barcelona TECH, Math Dept, Univ Politecn Catalunya, Barcelona, Spain; [Diaz, Josep; Serna, Maria; Serra, Oriol] Barcelona TECH, Inst Matemat, Univ Politecn Catalunya, Barcelona, Spain | en_US |
dc.description.abstract | Minimum vertex bisection is a graph partitioning problem in which the aim is to find a partition of the vertices into two equal parts that minimizes the number of vertices in one partition set that have a neighbor in the other set. In this work we are interested in providing asymptotically almost surely upper bounds on the minimum vertex bisection of random d -regular graphs, for constant values of d . Our approach is based on analyzing a greedy algorithm by using the differential equation method. In this way, we obtain the first known non -trivial upper bounds for the vertex bisection number in random regular graphs. The numerical approximations of these theoretical bounds are compared with the emprical ones, and with the lower bounds from Kolesnik and Wormald (2014) [30]. (c) 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/). | en_US |
dc.description.sponsorship | Spanish Agencia Estatal de Investigacion [PID2020-13082GB-I00, PID2020-112581GB-C21]; Scientific and Technological Research Council Tuebitak [BIDEB 2219-1059B191802095]; Kadir Has University [2018-BAP-08] | en_US |
dc.description.sponsorship | J. Diaz and M. Serna were partially supported by the Spanish Agencia Estatal de Investigacion under project MOTION, PID2020-112581GB-C21. O.Y. Diner was partially supported by the Scientific and Technological Research Council Tuebitak under project BIDEB 2219-1059B191802095 and by Kadir Has University under project 2018-BAP-08. O. Serra research was supported by the Spanish Agencia Estatal de Investigacion under project CONTREWA, PID2020-13082GB-I00. | en_US |
dc.identifier.citation | 0 | |
dc.identifier.doi | 10.1016/j.jcss.2024.103550 | |
dc.identifier.issn | 0022-0000 | |
dc.identifier.issn | 1090-2724 | |
dc.identifier.scopus | 2-s2.0-85194072135 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.uri | https://doi.org/10.1016/j.jcss.2024.103550 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12469/5643 | |
dc.identifier.volume | 144 | en_US |
dc.identifier.wos | WOS:001247310900002 | |
dc.identifier.wosquality | Q3 | |
dc.language.iso | en | en_US |
dc.publisher | Academic Press inc Elsevier Science | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Vertex bisection number | en_US |
dc.subject | Random regular graphs | en_US |
dc.subject | Differential equations method | en_US |
dc.title | On minimum vertex bisection of random d-regular graphs | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication |