Leveraging Explainable Artificial Intelligence for Transparent and Trustworthy Cancer Detection Systems
| dc.contributor.author | Toumaj, Shiva | |
| dc.contributor.author | Heidari, Arash | |
| dc.contributor.author | Navimipour, Nima Jafari | |
| dc.date.accessioned | 2025-09-15T15:48:56Z | |
| dc.date.available | 2025-09-15T15:48:56Z | |
| dc.date.issued | 2025 | |
| dc.description.abstract | Timely detection of cancer is essential for enhancing patient outcomes. Artificial Intelligence (AI), especially Deep Learning (DL), demonstrates significant potential in cancer diagnostics; however, its opaque nature presents notable concerns. Explainable AI (XAI) mitigates these issues by improving transparency and interpretability. This study provides a systematic review of recent applications of XAI in cancer detection, categorizing the techniques according to cancer type, including breast, skin, lung, colorectal, brain, and others. It emphasizes interpretability methods, dataset utilization, simulation environments, and security considerations. The results indicate that Convolutional Neural Networks (CNNs) account for 31 % of model usage, SHAP is the predominant interpretability framework at 44.4 %, and Python is the leading programming language at 32.1 %. Only 7.4 % of studies address security issues. This study identifies significant challenges and gaps, guiding future research in trustworthy and interpretable AI within oncology. | en_US |
| dc.identifier.doi | 10.1016/j.artmed.2025.103243 | |
| dc.identifier.issn | 0933-3657 | |
| dc.identifier.issn | 1873-2860 | |
| dc.identifier.scopus | 2-s2.0-105013515395 | |
| dc.identifier.uri | https://doi.org/10.1016/j.artmed.2025.103243 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12469/7482 | |
| dc.language.iso | en | en_US |
| dc.publisher | Elsevier | en_US |
| dc.relation.ispartof | Artificial Intelligence in Medicine | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Explainable Artificial Intelligence | en_US |
| dc.subject | Cancer Detection | en_US |
| dc.subject | Machine Learning | en_US |
| dc.subject | Deep Learning | en_US |
| dc.subject | Black-Box | en_US |
| dc.title | Leveraging Explainable Artificial Intelligence for Transparent and Trustworthy Cancer Detection Systems | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.scopusid | 57374440700 | |
| gdc.author.scopusid | 57217424609 | |
| gdc.author.scopusid | 55897274300 | |
| gdc.author.wosid | Heidari, Arash/Aak-9761-2021 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | Kadir Has University | en_US |
| gdc.description.departmenttemp | [Toumaj, Shiva] Urmia Univ Med Sci, Orumiyeh, Iran; [Heidari, Arash] Univ Trento, Dept Informat Engn & Comp Sci, I-38123 Trento, Italy; [Heidari, Arash] Univ Tehran, Coll Engn, Sch Elect & Comp Engn, Tehran 1439957131, Iran; [Navimipour, Nima Jafari] Kadir Has Univ, Fac Engn & Nat Sci, Dept Comp Engn, TR-34083 Istanbul, Turkiye; [Navimipour, Nima Jafari] Natl Yunlin Univ Sci & Technol, Future Technol Res Ctr, Touliu 64002, Yunlin, Taiwan; [Navimipour, Nima Jafari] Western Caspian Univ, Res Ctr High Technol & Innovat Engn, Baku, Azerbaijan | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q1 | |
| gdc.description.startpage | 103243 | |
| gdc.description.volume | 169 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W4413444273 | |
| gdc.identifier.pmid | 40839960 | |
| gdc.identifier.wos | WOS:001559888200001 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.index.type | PubMed | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 4.0 | |
| gdc.oaire.influence | 2.6539315E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.popularity | 5.755049E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.openalex.collaboration | International | |
| gdc.openalex.fwci | 37.07173 | |
| gdc.openalex.normalizedpercentile | 0.99 | |
| gdc.openalex.toppercent | TOP 1% | |
| gdc.opencitations.count | 0 | |
| gdc.plumx.mendeley | 27 | |
| gdc.plumx.newscount | 1 | |
| gdc.plumx.pubmedcites | 1 | |
| gdc.plumx.scopuscites | 3 | |
| gdc.scopus.citedcount | 4 | |
| gdc.virtual.author | Jafari Navimipour, Nima | |
| gdc.wos.citedcount | 6 | |
| relation.isAuthorOfPublication | 0fb3c7a0-c005-4e5f-a9ae-bb163df2df8e | |
| relation.isAuthorOfPublication.latestForDiscovery | 0fb3c7a0-c005-4e5f-a9ae-bb163df2df8e | |
| relation.isOrgUnitOfPublication | fd8e65fe-c3b3-4435-9682-6cccb638779c | |
| relation.isOrgUnitOfPublication | 2457b9b3-3a3f-4c17-8674-7f874f030d96 | |
| relation.isOrgUnitOfPublication | b20623fc-1264-4244-9847-a4729ca7508c | |
| relation.isOrgUnitOfPublication.latestForDiscovery | fd8e65fe-c3b3-4435-9682-6cccb638779c |
