Leveraging Explainable Artificial Intelligence for Transparent and Trustworthy Cancer Detection Systems

dc.contributor.author Toumaj, Shiva
dc.contributor.author Heidari, Arash
dc.contributor.author Navimipour, Nima Jafari
dc.date.accessioned 2025-09-15T15:48:56Z
dc.date.available 2025-09-15T15:48:56Z
dc.date.issued 2025
dc.description.abstract Timely detection of cancer is essential for enhancing patient outcomes. Artificial Intelligence (AI), especially Deep Learning (DL), demonstrates significant potential in cancer diagnostics; however, its opaque nature presents notable concerns. Explainable AI (XAI) mitigates these issues by improving transparency and interpretability. This study provides a systematic review of recent applications of XAI in cancer detection, categorizing the techniques according to cancer type, including breast, skin, lung, colorectal, brain, and others. It emphasizes interpretability methods, dataset utilization, simulation environments, and security considerations. The results indicate that Convolutional Neural Networks (CNNs) account for 31 % of model usage, SHAP is the predominant interpretability framework at 44.4 %, and Python is the leading programming language at 32.1 %. Only 7.4 % of studies address security issues. This study identifies significant challenges and gaps, guiding future research in trustworthy and interpretable AI within oncology. en_US
dc.identifier.doi 10.1016/j.artmed.2025.103243
dc.identifier.issn 0933-3657
dc.identifier.issn 1873-2860
dc.identifier.scopus 2-s2.0-105013515395
dc.identifier.uri https://doi.org/10.1016/j.artmed.2025.103243
dc.identifier.uri https://hdl.handle.net/20.500.12469/7482
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.relation.ispartof Artificial Intelligence in Medicine en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Explainable Artificial Intelligence en_US
dc.subject Cancer Detection en_US
dc.subject Machine Learning en_US
dc.subject Deep Learning en_US
dc.subject Black-Box en_US
dc.title Leveraging Explainable Artificial Intelligence for Transparent and Trustworthy Cancer Detection Systems en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 57374440700
gdc.author.scopusid 57217424609
gdc.author.scopusid 55897274300
gdc.author.wosid Heidari, Arash/Aak-9761-2021
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Kadir Has University en_US
gdc.description.departmenttemp [Toumaj, Shiva] Urmia Univ Med Sci, Orumiyeh, Iran; [Heidari, Arash] Univ Trento, Dept Informat Engn & Comp Sci, I-38123 Trento, Italy; [Heidari, Arash] Univ Tehran, Coll Engn, Sch Elect & Comp Engn, Tehran 1439957131, Iran; [Navimipour, Nima Jafari] Kadir Has Univ, Fac Engn & Nat Sci, Dept Comp Engn, TR-34083 Istanbul, Turkiye; [Navimipour, Nima Jafari] Natl Yunlin Univ Sci & Technol, Future Technol Res Ctr, Touliu 64002, Yunlin, Taiwan; [Navimipour, Nima Jafari] Western Caspian Univ, Res Ctr High Technol & Innovat Engn, Baku, Azerbaijan en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 103243
gdc.description.volume 169 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W4413444273
gdc.identifier.pmid 40839960
gdc.identifier.wos WOS:001559888200001
gdc.index.type WoS
gdc.index.type Scopus
gdc.index.type PubMed
gdc.oaire.diamondjournal false
gdc.oaire.impulse 4.0
gdc.oaire.influence 2.6539315E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 5.755049E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration International
gdc.openalex.fwci 37.07173
gdc.openalex.normalizedpercentile 0.99
gdc.openalex.toppercent TOP 1%
gdc.opencitations.count 0
gdc.plumx.mendeley 27
gdc.plumx.newscount 1
gdc.plumx.pubmedcites 1
gdc.plumx.scopuscites 3
gdc.scopus.citedcount 4
gdc.virtual.author Jafari Navimipour, Nima
gdc.wos.citedcount 6
relation.isAuthorOfPublication 0fb3c7a0-c005-4e5f-a9ae-bb163df2df8e
relation.isAuthorOfPublication.latestForDiscovery 0fb3c7a0-c005-4e5f-a9ae-bb163df2df8e
relation.isOrgUnitOfPublication fd8e65fe-c3b3-4435-9682-6cccb638779c
relation.isOrgUnitOfPublication 2457b9b3-3a3f-4c17-8674-7f874f030d96
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery fd8e65fe-c3b3-4435-9682-6cccb638779c

Files