A Susceptible-Infectious (SI) model with two infective stages and an endemic equilibrium
dc.authorid | Dobie, Ayse Peker/0000-0002-5228-7694 | |
dc.authorid | Bilge, Ayse Humeyra/0000-0002-6043-0833 | |
dc.authorwosid | Dobie, Ayse Peker/ABB-4876-2020 | |
dc.authorwosid | Bilge, Ayse Humeyra/I-5901-2012 | |
dc.contributor.author | Bilge, Ayşe Hümeyra | |
dc.contributor.author | Demirci, Ali | |
dc.contributor.author | Bilge, Ayse Humeyra | |
dc.contributor.author | Dobie, Ayse Peker | |
dc.date.accessioned | 2023-10-19T15:11:39Z | |
dc.date.available | 2023-10-19T15:11:39Z | |
dc.date.issued | 2022 | |
dc.department-temp | [Ahmetolan, Semra; Demirci, Ali; Dobie, Ayse Peker] Istanbul Tech Univ, Fac Sci & Letters, Dept Math, Istanbul, Turkey; [Bilge, Ayse Humeyra; Dobie, Ayse Peker] Kadir Has Univ, Fac Engn & Nat Sci, Dept Ind Engn, Istanbul, Turkey | en_US |
dc.description.abstract | The focus of this article is on the dynamics of a susceptible-infected model which consists of a susceptible group (S) and two different infectious groups (I-1 and I-2). Once infected, an individual becomes a member of one of these infectious groups which have different clinical forms of infection. In addition, during the progress of the illness, an infected individual in group I-1 may pass to the infectious group I-2 which has a higher mortality rate. The infection is deadly and it has no cure. In this study, positiveness of the solutions for the model is proved. Stability analysis of species extinction, I-1-free equilibrium and endemic equilibrium as well as disease-free equilibrium is studied, and it is shown that the disease-free equilibrium is stable whereas all other equilibrium points are asymptotically stable for parameter ranges determined by certain inequalities. In addition, relations between the basic reproduction number of the disease and the basic reproduction number of each infectious stage are examined. Furthermore, the case where all newborns from infected mothers are also infected is analysed. For this type of vertical transmission, endemic equilibrium is asymptotically stable for certain parameter ranges. Finally, a special case which refers to the disease without vital dynamics is investigated and its exact solution is obtained. (c) 2021 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved. | en_US |
dc.identifier.citation | 1 | |
dc.identifier.doi | 10.1016/j.matcom.2021.11.003 | en_US |
dc.identifier.endpage | 35 | en_US |
dc.identifier.issn | 0378-4754 | |
dc.identifier.issn | 1872-7166 | |
dc.identifier.scopus | 2-s2.0-85120311701 | en_US |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 19 | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.matcom.2021.11.003 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12469/5147 | |
dc.identifier.volume | 194 | en_US |
dc.identifier.wos | WOS:000790019700002 | en_US |
dc.identifier.wosquality | Q1 | |
dc.khas | 20231019-WoS | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.ispartof | Mathematics and Computers in Simulation | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Feline | En_Us |
dc.subject | Epidemic models | en_US |
dc.subject | Endemic equilibrium | en_US |
dc.subject | Epidemics | En_Us |
dc.subject | Extinction | en_US |
dc.subject | Reproduction number | en_US |
dc.subject | Feline | |
dc.subject | Infectious Diseases | en_US |
dc.subject | Epidemics | |
dc.subject | Stability | en_US |
dc.title | A Susceptible-Infectious (SI) model with two infective stages and an endemic equilibrium | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 1b50a6b2-7290-44da-b8d5-f048fea8b315 | |
relation.isAuthorOfPublication.latestForDiscovery | 1b50a6b2-7290-44da-b8d5-f048fea8b315 |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- 5147.pdf
- Size:
- 2.19 MB
- Format:
- Adobe Portable Document Format
- Description:
- Tam Metin / Full Text