Anomaly detection in time series

dc.contributor.advisorÖ?renci, Arif Selçuken_US
dc.contributor.authorAl-Bayati, Taha A.
dc.date.accessioned2020-02-20T14:29:36Z
dc.date.available2020-02-20T14:29:36Z
dc.date.issued2019
dc.departmentEnstitüler, Lisansüstü Eğitim Enstitüsü, Bilgisayar Mühendisliği Ana Bilim Dalıen_US
dc.department-tempKadir Has University : Graduate School of Science and Engineering: Computer Engineeringen_US
dc.description.abstractThe concept of "Internet of Things" is based on connecting any physical object through the internet. This will facilitate our daily lives by dedicating technology in our will. In such a world, the number other interconnected devices is enormous, hence, the need for high performance processing in real-time is huge. This research shines light on the importance of the event processing and machine learning in the time series. A multiple of machine learning algorithms such as support vector machine, decision tree, autoencoder, and K-mean clustering are used for training a time series. A comparison of different methods is analyzed to obtain a robust conclusion about the data. The time series data is used to distinguish the state of emotions for a group of people (15 in total) who participated in an experiment. The state of the emotion may be in one of the four states: stressed, amused, natural, and sad. In this work, we compared the performance of algorithms in terms of their accuracy of predicting the emotions.en_US
dc.description.abstractNesnelerin interneti kavramı herhangi bir fiziksel nesneyi internete bağlamaya dayanır. Bu, teknolojiyi isteklerimiz yönünde kullanmaya sevk ederek günlük hayatımızı etkileyecektir. Böylesi bir dünyada birbirine bağlı cihazların sayısı muazzam olacak ve gerçek zamanda yüksek performanslı very işlemeye ihtiyaç duyulacaktır. Bu araştırma, zaman serilerinde olay işleme ve makine öğrenmesinin önemi konusuna ışık tutmaktadır. Bir zaman serisinin eğitimi için farklı makine öğrenmesi algoritmaları kullanılmıştır: destek vektör makinesi, karar ağaçları, otokodlayıcı ve K-ortalama öbekleyici. Veri hakkında sağlam bir sonuca varmak için farklı yöntemlerin kıyaslaması yapılmıştır. Bu zaman serisi verisi 15 kişilik bir grubun duygu durumunu ayırt etmeye yarayan ölçümlere dayanmaktadır. Bunlar şu dört durumdan biridir: stresli, eğlenmiş, doğal, üzgün. Bu çalışmada duyguların öngörülmesindeki doğruluk cinsinden algoritmaların performansları karşılaştırılmıştır.en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12469/2784
dc.identifier.yoktezid594998en_US
dc.language.isoenen_US
dc.publisherKadir Has Üniversitesien_US
dc.relation.publicationcategoryTezen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectInternet of Thingsen_US
dc.subjecthealthcareen_US
dc.subjectanomaly detectionen_US
dc.subjectmachine learningen_US
dc.subjectNesnelerin internetien_US
dc.subjectsağlık hizmetlerien_US
dc.subjectanormallik yakalamaen_US
dc.subjectmakine öğrenmesien_US
dc.titleAnomaly detection in time seriesen_US
dc.typeMaster Thesisen_US
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Anomaly detection in time series.pdf
Size:
1.45 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections