Data-Driven Local Control Design for Dead Band Control of Load Tap Changers

dc.authorscopusid57214754719
dc.authorscopusid26665865200
dc.authorscopusid26423147300
dc.contributor.authorSavasci, A.
dc.contributor.authorCeylan, O.
dc.contributor.authorPaudyal, S.
dc.date.accessioned2025-04-15T23:41:55Z
dc.date.available2025-04-15T23:41:55Z
dc.date.issued2024
dc.departmentKadir Has Universityen_US
dc.department-temp[Savasci A.] Abdullah Gul University, Turkey; [Ceylan O.] Kadir Has University, Turkey; [Paudyal S.] Florida International University, United Statesen_US
dc.description.abstractThis study presents an off-line optimization-guided machine learning approach for coordinating the local control rules of on-load tap changers (OLTCs) and step-voltage regula-tors (SVRs). Based on a bang-bang control rule, these legacy devices autonomously regulate the feeder voltage around the nominal level by varying the tap position in the lower or raise direction. The characterizing parameter of the local control rule is the dead band, which affects the number of tap switching in operation and is directly related to the economical use life of the equipment. The bandwidth is typically set within a standard voltage range and is generally kept constant in daily operation. However, adjusting the bandwidth dynamically can prevent excessive tap switching while maintaining satisfactory voltage regulation for varying loading and distributed generation conditions. Our approach aims to set the bandwidth parameter systematically and efficiently through a machine learning-based scheme, which is trained with a dataset formed by solving the distribution network optimal power flow (DOPF) problem. The performance of learning the bandwidth parameter is demonstrated on the modified 33-node feeder, which is promising for integrated voltage control schemes. © 2024 IEEE.en_US
dc.identifier.doi10.1109/UPEC61344.2024.10892461
dc.identifier.isbn9798350379730
dc.identifier.scopus2-s2.0-86000797359
dc.identifier.scopusqualityN/A
dc.identifier.urihttps://doi.org/10.1109/UPEC61344.2024.10892461
dc.identifier.urihttps://hdl.handle.net/20.500.12469/7280
dc.identifier.wosqualityN/A
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof2024 59th International Universities Power Engineering Conference, UPEC 2024 -- 59th International Universities Power Engineering Conference, UPEC 2024 -- 2 September 2024 through 6 September 2024 -- Cardiff -- 207176en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDistribution Griden_US
dc.subjectMachine Learningen_US
dc.subjectOptimal Power Flowen_US
dc.subjectVoltage Controlen_US
dc.titleData-Driven Local Control Design for Dead Band Control of Load Tap Changersen_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files