Milling Process Monitoring Based on Intelligent Real-Time Parameter Identification for Unmanned Manufacturing

dc.authoridPashmforoush, Farzad/0000-0002-2219-5158
dc.authoridEbrahimi Araghizad, Arash/0000-0003-4117-1773
dc.authorscopusid59141874400
dc.authorscopusid57195759159
dc.authorscopusid45161611900
dc.authorscopusid7004303301
dc.authorwosidEbrahimi Araghizad, Arash/KHW-0682-2024
dc.authorwosidBudak, Erhan/AAB-7226-2020
dc.authorwosidTehranizadeh, Faraz/HGE-9338-2022
dc.contributor.authorAraghizad, Arash Ebrahimi
dc.contributor.authorTehranizadeh, Faraz
dc.contributor.authorPashmforoush, Farzad
dc.contributor.authorBudak, Erhan
dc.date.accessioned2024-06-23T21:39:26Z
dc.date.available2024-06-23T21:39:26Z
dc.date.issued2024
dc.departmentKadir Has Universityen_US
dc.department-temp[Araghizad, Arash Ebrahimi; Pashmforoush, Farzad; Budak, Erhan] Sabanci Univ, Mfg Res Lab, Istanbul, Turkiye; [Tehranizadeh, Faraz] Kadir Has Univ, Fac Engn & Nat Sci, Istanbul, Turkiyeen_US
dc.descriptionPashmforoush, Farzad/0000-0002-2219-5158; Ebrahimi Araghizad, Arash/0000-0003-4117-1773en_US
dc.description.abstractThis study addresses the critical need for intelligent process monitoring in unmanned manufacturing through real-time fault detection. The proposed hybrid approach, which is focused on overcoming the limitations of existing methods, utilizes machine learning (ML) for precise parameter identification in real-time to detect deviations. The ML system is developed using extensive data obtained from simulations based on enhanced force models also achieved through ML. Demonstrating over 96 % accuracy in real-time predictions, the method proves applicable for diverse unmanned manufacturing applications, including monitoring and process optimization, emphasizing its adaptability for industrial implementation using CNC controller signals. (c) 2024 CIRP. Published by Elsevier Ltd. All rights reserved.en_US
dc.description.sponsorshipTürkiye Bilimsel ve Teknolojik Araştırma Kurumu, TÜBİTAK, (219M487); Türkiye Bilimsel ve Teknolojik Araştırma Kurumu, TÜBİTAKen_US
dc.description.sponsorshipTUBITAK [219M487]en_US
dc.description.sponsorshipThe authors greatly appreciate the support of TUBITAK (219M487) .en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.citation0
dc.identifier.doi10.1016/j.cirp.2024.04.083
dc.identifier.endpage328en_US
dc.identifier.issn0007-8506
dc.identifier.issn1726-0604
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-85194108205
dc.identifier.scopusqualityQ1
dc.identifier.startpage325en_US
dc.identifier.urihttps://doi.org/10.1016/j.cirp.2024.04.083
dc.identifier.volume73en_US
dc.identifier.wosWOS:001276950400001
dc.identifier.wosqualityQ2
dc.institutionauthorTehranizadeh, Faraz
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofCIRP Annalsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectMillingen_US
dc.subjectMonitoringen_US
dc.subjectMachine learningen_US
dc.titleMilling Process Monitoring Based on Intelligent Real-Time Parameter Identification for Unmanned Manufacturingen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationdb49445c-e704-4e9e-8c2b-75a770ea52ad
relation.isAuthorOfPublication.latestForDiscoverydb49445c-e704-4e9e-8c2b-75a770ea52ad

Files