Milling Process Monitoring Based on Intelligent Real-Time Parameter Identification for Unmanned Manufacturing

dc.authorid Pashmforoush, Farzad/0000-0002-2219-5158
dc.authorid Ebrahimi Araghizad, Arash/0000-0003-4117-1773
dc.authorscopusid 59141874400
dc.authorscopusid 57195759159
dc.authorscopusid 45161611900
dc.authorscopusid 7004303301
dc.authorwosid Ebrahimi Araghizad, Arash/KHW-0682-2024
dc.authorwosid Budak, Erhan/AAB-7226-2020
dc.authorwosid Tehranizadeh, Faraz/HGE-9338-2022
dc.contributor.author Araghizad, Arash Ebrahimi
dc.contributor.author Tehranizadeh, Faraz
dc.contributor.author Tehranizadeh, Faraz
dc.contributor.author Pashmforoush, Farzad
dc.contributor.author Budak, Erhan
dc.contributor.other Mechatronics Engineering
dc.date.accessioned 2024-06-23T21:39:26Z
dc.date.available 2024-06-23T21:39:26Z
dc.date.issued 2024
dc.department Kadir Has University en_US
dc.department-temp [Araghizad, Arash Ebrahimi; Pashmforoush, Farzad; Budak, Erhan] Sabanci Univ, Mfg Res Lab, Istanbul, Turkiye; [Tehranizadeh, Faraz] Kadir Has Univ, Fac Engn & Nat Sci, Istanbul, Turkiye en_US
dc.description Pashmforoush, Farzad/0000-0002-2219-5158; Ebrahimi Araghizad, Arash/0000-0003-4117-1773 en_US
dc.description.abstract This study addresses the critical need for intelligent process monitoring in unmanned manufacturing through real-time fault detection. The proposed hybrid approach, which is focused on overcoming the limitations of existing methods, utilizes machine learning (ML) for precise parameter identification in real-time to detect deviations. The ML system is developed using extensive data obtained from simulations based on enhanced force models also achieved through ML. Demonstrating over 96 % accuracy in real-time predictions, the method proves applicable for diverse unmanned manufacturing applications, including monitoring and process optimization, emphasizing its adaptability for industrial implementation using CNC controller signals. (c) 2024 CIRP. Published by Elsevier Ltd. All rights reserved. en_US
dc.description.sponsorship Türkiye Bilimsel ve Teknolojik Araştırma Kurumu, TÜBİTAK, (219M487); Türkiye Bilimsel ve Teknolojik Araştırma Kurumu, TÜBİTAK en_US
dc.description.sponsorship TUBITAK [219M487] en_US
dc.description.sponsorship The authors greatly appreciate the support of TUBITAK (219M487) . en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citationcount 0
dc.identifier.doi 10.1016/j.cirp.2024.04.083
dc.identifier.endpage 328 en_US
dc.identifier.issn 0007-8506
dc.identifier.issn 1726-0604
dc.identifier.issue 1 en_US
dc.identifier.scopus 2-s2.0-85194108205
dc.identifier.scopusquality Q1
dc.identifier.startpage 325 en_US
dc.identifier.uri https://doi.org/10.1016/j.cirp.2024.04.083
dc.identifier.volume 73 en_US
dc.identifier.wos WOS:001276950400001
dc.identifier.wosquality Q2
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.relation.ispartof CIRP Annals en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 4
dc.subject Milling en_US
dc.subject Monitoring en_US
dc.subject Machine learning en_US
dc.title Milling Process Monitoring Based on Intelligent Real-Time Parameter Identification for Unmanned Manufacturing en_US
dc.type Article en_US
dc.wos.citedbyCount 1
dspace.entity.type Publication
relation.isAuthorOfPublication db49445c-e704-4e9e-8c2b-75a770ea52ad
relation.isAuthorOfPublication.latestForDiscovery db49445c-e704-4e9e-8c2b-75a770ea52ad
relation.isOrgUnitOfPublication 01f3d407-6823-4ad3-8298-0b6a2a6e5cff
relation.isOrgUnitOfPublication.latestForDiscovery 01f3d407-6823-4ad3-8298-0b6a2a6e5cff

Files