Automatic Segmentation of Time Series Data With Pelt Algorithm for Predictive Maintenance in the Flat Steel Industry

dc.authorscopusid 59520568200
dc.authorscopusid 24823826600
dc.authorscopusid 35782637700
dc.contributor.author Kaçar, S.
dc.contributor.author Balli, T.
dc.contributor.author Yetkin, E.F.
dc.date.accessioned 2025-02-15T19:38:28Z
dc.date.available 2025-02-15T19:38:28Z
dc.date.issued 2024
dc.department Kadir Has University en_US
dc.department-temp Kaçar S., Kadir Has University, Istanbul, Turkey, Borçelik A.Ş., Bursa, Turkey; Balli T., Kadir Has University, Istanbul, Turkey; Yetkin E.F., Kadir Has University, Istanbul, Turkey en_US
dc.description.abstract In this study, we aim to test the usability of Change Point Detection (CPD) algorithms (specifically the Pruned Exact Linear Time-PELT) to facilitate the utilization of large volumes of data within predictive mechanisms in the industry. We proposed an efficient CPD parameter selection mechanism for defect diagnosis using time-series vibration data from critical assets. We emphasized the practical algorithm PELT to ensure broad industrial applicability. Our experimental analysis, using synthetic and actual vibration data, demonstrated the practical applicability and effectiveness of PELT algorithm for automatic segmentation. The numerical results show the potential of CPD methodologies for improving predictive maintenance operations by providing an automatic segmentation mechanism. This pipeline proposes a way to increase the operational efficiency and scalability of predictive maintenance approaches, enhancing maintenance procedures and ensuring the long-term reliability of industrial systems. © 2024 IEEE. en_US
dc.identifier.citationcount 0
dc.identifier.doi 10.1109/UBMK63289.2024.10773396
dc.identifier.endpage 907 en_US
dc.identifier.isbn 9798350365887
dc.identifier.scopus 2-s2.0-85215521309
dc.identifier.scopusquality N/A
dc.identifier.startpage 902 en_US
dc.identifier.uri https://doi.org/10.1109/UBMK63289.2024.10773396
dc.identifier.uri https://hdl.handle.net/20.500.12469/7190
dc.identifier.wosquality N/A
dc.language.iso en en_US
dc.publisher Institute of Electrical and Electronics Engineers Inc. en_US
dc.relation.ispartof UBMK 2024 - Proceedings: 9th International Conference on Computer Science and Engineering -- 9th International Conference on Computer Science and Engineering, UBMK 2024 -- 26 October 2024 through 28 October 2024 -- Antalya -- 204906 en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 1
dc.subject Change Point Detection (Cpd) en_US
dc.subject Cost-Effective Solutions en_US
dc.subject Fault Detection en_US
dc.subject Hybrid Monitoring System en_US
dc.subject Operational Efficiency en_US
dc.subject Predictive Maintenance en_US
dc.subject Real-Time Monitoring en_US
dc.subject Scalability en_US
dc.subject Vibration Data en_US
dc.title Automatic Segmentation of Time Series Data With Pelt Algorithm for Predictive Maintenance in the Flat Steel Industry en_US
dc.type Conference Object en_US
dspace.entity.type Publication

Files