Automatic Segmentation of Time Series Data With Pelt Algorithm for Predictive Maintenance in the Flat Steel Industry

dc.contributor.author Kaçar, S.
dc.contributor.author Balli, T.
dc.contributor.author Yetkin, E.F.
dc.date.accessioned 2025-02-15T19:38:28Z
dc.date.available 2025-02-15T19:38:28Z
dc.date.issued 2024
dc.description.abstract In this study, we aim to test the usability of Change Point Detection (CPD) algorithms (specifically the Pruned Exact Linear Time-PELT) to facilitate the utilization of large volumes of data within predictive mechanisms in the industry. We proposed an efficient CPD parameter selection mechanism for defect diagnosis using time-series vibration data from critical assets. We emphasized the practical algorithm PELT to ensure broad industrial applicability. Our experimental analysis, using synthetic and actual vibration data, demonstrated the practical applicability and effectiveness of PELT algorithm for automatic segmentation. The numerical results show the potential of CPD methodologies for improving predictive maintenance operations by providing an automatic segmentation mechanism. This pipeline proposes a way to increase the operational efficiency and scalability of predictive maintenance approaches, enhancing maintenance procedures and ensuring the long-term reliability of industrial systems. © 2024 IEEE. en_US
dc.identifier.doi 10.1109/UBMK63289.2024.10773396
dc.identifier.isbn 9798350365887
dc.identifier.scopus 2-s2.0-85215521309
dc.identifier.uri https://doi.org/10.1109/UBMK63289.2024.10773396
dc.identifier.uri https://hdl.handle.net/20.500.12469/7190
dc.language.iso en en_US
dc.publisher Institute of Electrical and Electronics Engineers Inc. en_US
dc.relation.ispartof UBMK 2024 - Proceedings: 9th International Conference on Computer Science and Engineering -- 9th International Conference on Computer Science and Engineering, UBMK 2024 -- 26 October 2024 through 28 October 2024 -- Antalya -- 204906 en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Change Point Detection (Cpd) en_US
dc.subject Cost-Effective Solutions en_US
dc.subject Fault Detection en_US
dc.subject Hybrid Monitoring System en_US
dc.subject Operational Efficiency en_US
dc.subject Predictive Maintenance en_US
dc.subject Real-Time Monitoring en_US
dc.subject Scalability en_US
dc.subject Vibration Data en_US
dc.title Automatic Segmentation of Time Series Data With Pelt Algorithm for Predictive Maintenance in the Flat Steel Industry en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.scopusid 59520568200
gdc.author.scopusid 24823826600
gdc.author.scopusid 35782637700
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.collaboration.industrial false
gdc.description.department Kadir Has University en_US
gdc.description.departmenttemp Kaçar S., Kadir Has University, Istanbul, Turkey, Borçelik A.Ş., Bursa, Turkey; Balli T., Kadir Has University, Istanbul, Turkey; Yetkin E.F., Kadir Has University, Istanbul, Turkey en_US
gdc.description.endpage 907 en_US
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 902 en_US
gdc.description.wosquality N/A
gdc.identifier.openalex W4405272781
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.4895952E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.3737945E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration National
gdc.openalex.fwci 2.54483474
gdc.openalex.normalizedpercentile 0.84
gdc.opencitations.count 1
gdc.plumx.mendeley 3
gdc.plumx.scopuscites 2
gdc.scopus.citedcount 3
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery b20623fc-1264-4244-9847-a4729ca7508c

Files