Everything you wanted to know about ChatGPT: Components, capabilities, applications, and opportunities

dc.authoridHeidari, Arash/0000-0003-4279-8551
dc.authorscopusid57217424609
dc.authorscopusid59125628000
dc.authorscopusid7003472739
dc.authorscopusid55427784900
dc.authorwosidHeidari, Arash/AAK-9761-2021
dc.contributor.authorHeidari, Arash
dc.contributor.authorNavimipour, Nima Jafari
dc.contributor.authorZeadally, Sherali
dc.contributor.authorChamola, Vinay
dc.date.accessioned2024-06-23T21:37:44Z
dc.date.available2024-06-23T21:37:44Z
dc.date.issued2024
dc.departmentKadir Has Universityen_US
dc.department-temp[Heidari, Arash] Halic Univ, Dept Software Engn, Istanbul, Turkiye; [Heidari, Arash] Istanbul Atlas Univ, Fac Engn & Nat Sci, Dept Comp Engn, Istanbul, Turkiye; [Navimipour, Nima Jafari] Kadir Has Univ, Fac Engn & Nat Sci, Dept Comp Engn, TR-34083 Istanbul, Turkiye; [Navimipour, Nima Jafari] Natl Yunlin Univ Sci & Technol, Future Technol Res Ctr, Touliu, Taiwan; [Zeadally, Sherali] Univ Kentucky, Coll Commun & Informat, Lexington, KY USA; [Chamola, Vinay] Birla Inst Technol & Sci BITS, Pilani, Indiaen_US
dc.descriptionHeidari, Arash/0000-0003-4279-8551en_US
dc.description.abstractConversational Artificial Intelligence (AI) and Natural Language Processing have advanced significantly with the creation of a Generative Pre-trained Transformer (ChatGPT) by OpenAI. ChatGPT uses deep learning techniques like transformer architecture and self-attention mechanisms to replicate human speech and provide coherent and appropriate replies to the situation. The model mainly depends on the patterns discovered in the training data, which might result in incorrect or illogical conclusions. In the context of open-domain chats, we investigate the components, capabilities constraints, and potential applications of ChatGPT along with future opportunities. We begin by describing the components of ChatGPT followed by a definition of chatbots. We present a new taxonomy to classify them. Our taxonomy includes rule-based chatbots, retrieval-based chatbots, generative chatbots, and hybrid chatbots. Next, we describe the capabilities and constraints of ChatGPT. Finally, we present potential applications of ChatGPT and future research opportunities. The results showed that ChatGPT, a transformer-based chatbot model, utilizes encoders to produce coherent responses.en_US
dc.identifier.citation0
dc.identifier.doi10.1002/itl2.530
dc.identifier.issn2476-1508
dc.identifier.scopus2-s2.0-85194725891
dc.identifier.scopusqualityQ3
dc.identifier.urihttps://doi.org/10.1002/itl2.530
dc.identifier.urihttps://hdl.handle.net/20.500.12469/5740
dc.identifier.wosWOS:001235765500001
dc.identifier.wosqualityN/A
dc.language.isoenen_US
dc.publisherJohn Wiley & Sons Ltden_US
dc.relation.publicationcategoryDiğeren_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectChatGPTen_US
dc.subjectconversational artificial intelligenceen_US
dc.subjectdeep learningen_US
dc.subjectgenerative pre-trained transformeren_US
dc.subjectlarge language modelsen_US
dc.subjectnatural language processingen_US
dc.subjectself-attention mechanismsen_US
dc.titleEverything you wanted to know about ChatGPT: Components, capabilities, applications, and opportunitiesen_US
dspace.entity.typePublication

Files