Improving the Accuracy of Indoor Positioning System

dc.contributor.advisor Arsan, Taner en_US
dc.contributor.author Hameez, Mohammed Muwafaq Noori
dc.contributor.author Arsan, Taner
dc.contributor.other Computer Engineering
dc.date.accessioned 2020-02-20T15:33:31Z
dc.date.available 2020-02-20T15:33:31Z
dc.date.issued 2019
dc.department Enstitüler, Lisansüstü Eğitim Enstitüsü, Bilgisayar Mühendisliği Ana Bilim Dalı en_US
dc.department-temp Kadir Has University : Graduate School of Science and Engineering: Computer Engineering en_US
dc.description.abstract Indoor positioning applications needs high accuracy and precision to overcome the existing obstacles and relatively small areas. There are several methods which could be used to locate an object or people in an indoor location. Specifically, Ultra-wide band (UWB) sensor technology is a promising technology in indoor environments because of its high accuracy, resistance of interference and better penetrating. This thesis is focused on improving the accuracy of UWB sensor based indoor positioning system. To achieve that, optimization and machine learning algorithms are implemented. The impact of Kalman Filter (KF) on the accuracy is introduced in the implementation of the algorithms. The average localization error is reduced by approximately 54.53% (from 16.34 cm to 7.43 cm), when combining the big bang - big crunch algorithm (BB-BC) with Kalman Filter. Finally, a Hybrid (BB-BC KF K-Means) algorithm is improved and implemented separately, and the best results are obtained from this Hybrid algorithm. Thus, it has been obtained that the average localization error is reduced significantly by approximately 64.26% (from 16.34 cm to 5.84 cm). en_US
dc.description.abstract İç mekan konum belirleme uygulamaları, nispeten daha küçük alanlarda kullanılmak ve mevcut engellerle başa çıkmak için dış mekan konum belirleme yöntemlerinden daha yüksek doğruluk ve hassasiyet gerektirir. İç mekandaki bir nesnenin veya insanın konumlarını belirlemek için kullanılabilecek çeşitli yöntemler bulunmaktadır. Özellikle, Ultra geniş bant (UWB) sensör teknolojisi, yüksek doğruluğu, bozuculara olan direnci ve iç mekan uygulamalarında geniş bant sinyallerinin her taraftan algınabilmesi özelliği sayesinde iç mekan konum belirlemede gelecek vaad eden bir teknolojidir. Bu tez çalışması, UWB sensör tabanlı iç mekan konum belirleme sisteminin doğruluğunu arttırmaya odaklanmıştır. Bunu başarmak için, optimizasyon ve makine öğrenmesi algoritmaları kullanılmıştır. Kalman Filtresi (KF)’nin konum belirleme doğruluğu üzerindeki etkisi algoritmaların uygulanması esnasında görülmüş ve açıklanmıştır. Büyük patlama - büyük çöküş algoritması (BB-BC), Kalman filtresiyle birleştirildiğinde, ortalama konum belirleme hatasının yaklaşık %54,53 oranındığı görülmüştür (16,34 cm'den 7,43 cm'ye düşer). Son olarak, bir Hibrit (BB-BC KF K-Ortalamalar) algoritma ayrı olarak geliştirilmiş ve uygulanmıştır, en iyi sonuçlar bu Hibrit algoritmadan elde edilmiştir. Bu sayede, ortalama lokalizasyon hatasının yaklaşık %64,26 oranında (16,34 cm'den 5,84 cm'ye) önemli ölçüde azaldığı belirlenmiştir. en_US
dc.identifier.uri https://hdl.handle.net/20.500.12469/2797
dc.identifier.yoktezid 586916 en_US
dc.language.iso en en_US
dc.publisher Kadir Has Üniversitesi en_US
dc.relation.publicationcategory Tez en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Indoor positioning en_US
dc.subject Ultra-wide band en_US
dc.subject Big bang-big crunch algorithm en_US
dc.subject Genetic algorithm en_US
dc.subject K-Means algorithm en_US
dc.subject Fuzzy C-Means algorithm en_US
dc.subject Mean Shift algorithm en_US
dc.subject Clustering en_US
dc.subject Average silhouette method en_US
dc.subject Kalman Filter en_US
dc.subject İç mekân konum belirleme en_US
dc.subject Ultra geniş bant en_US
dc.subject Büyük patlama - büyük çöküş algoritması en_US
dc.subject Genetik algoritma en_US
dc.subject K-Ortalamalar algoritması en_US
dc.subject Bulanık C-Ortalamalar algoritması en_US
dc.subject Ağırlıklı Ortalama Öteleme Algoritması en_US
dc.subject Kümeleme en_US
dc.subject Ortalama silhouette yöntemi en_US
dc.subject Kalman Filtresi en_US
dc.title Improving the Accuracy of Indoor Positioning System en_US
dc.type Master Thesis en_US
dspace.entity.type Publication
relation.isAuthorOfPublication 7959ea6c-1b30-4fa0-9c40-6311259c0914
relation.isAuthorOfPublication.latestForDiscovery 7959ea6c-1b30-4fa0-9c40-6311259c0914
relation.isOrgUnitOfPublication fd8e65fe-c3b3-4435-9682-6cccb638779c
relation.isOrgUnitOfPublication.latestForDiscovery fd8e65fe-c3b3-4435-9682-6cccb638779c

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Improving the accuracy of indoor positioning system.pdf
Size:
3.63 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections