Computational Analysis of a Zn-Bound Tris(imidazolyl) Calix[6]arene Aqua Complex: Toward Incorporating Second-Coordination Sphere Effects Into Carbonic Anhydrase Biomimetics

dc.contributor.author Koziol, Lucas
dc.contributor.author Eşsiz, Şebnem
dc.contributor.author Eşsiz, Şebnem
dc.contributor.author Wong, Sergio E.
dc.contributor.author Lau, Edmond Y.
dc.contributor.author Valdez, Carlos A.
dc.contributor.author Satcher, Joe H. Jr.
dc.contributor.author Aines, Roger D.
dc.contributor.author Lightstone, Felice C.
dc.contributor.other Molecular Biology and Genetics
dc.date.accessioned 2019-06-27T08:03:40Z
dc.date.available 2019-06-27T08:03:40Z
dc.date.issued 2013
dc.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Biyoinformatik ve Genetik Bölümü en_US
dc.description.abstract Molecular dynamics simulations and quantum-mechanical calculations were performed to characterize a supra-molecular tris(imidazolyl) calix[6]arene Zn2+ aqua complex as a biomimetic model for the catalyzed hydration of carbon dioxide to bicarbonate H2O + CO2 -> H+ + HCO3-. On the basis of potential-of-mean-force (PMF) calculations stable conformations had distorted 3-fold symmetry and supported either one or zero encapsulated water molecules. The conformation with an encapsulated water molecule is calculated to be lower in free energy than the conformation with an empty cavity (Delta G = 1.2 kcal/mol) and is the calculated free-energy minimum in solution. CO2 molecule partitioning into the cavity is shown to be very facile proceeding with a barrier of 1.6 kcal/mol from a weak encounter complex which stabilizes the species by about 1.0 kcal/mol. The stabilization energy of CO2 is calculated to be larger than that of H2O (Delta Delta G = 1.4 kcal/mol) suggesting that the complex will preferentially encapsulate CO2 in solution. In contrast the PMF for a bicarbonate anion entering the cavity is calculated to be repulsive in all nonbonding regions of the cavity due to the diameter of the calix[6]arene walls. Geometry optimization of the Zn-bound hydroxide complex with an encapsulated CO2 molecule showed that multiple noncovalent interactions direct the reactants into optimal position for nucleophilic addition to occur. The calixarene complex is a structural mimic of the hydrophilic/hydrophobic divide in the enzyme providing a functional effect for CO2 addition in the catalytic cycle. The results show that Zn-binding calix[6]arene scaffolds can be potential synthetic biomimetics for CO2 hydration catalysis both in terms of preferentially encapsulating CO2 from solution and by spatially fixing the reactive species inside the cavity. en_US]
dc.identifier.citationcount 5
dc.identifier.doi 10.1021/ct3008793 en_US
dc.identifier.endpage 1327
dc.identifier.issn 1549-9618 en_US
dc.identifier.issn 1549-9618
dc.identifier.issue 3
dc.identifier.pmid 26587594 en_US
dc.identifier.scopus 2-s2.0-84874880879 en_US
dc.identifier.startpage 1320 en_US
dc.identifier.uri https://hdl.handle.net/20.500.12469/825
dc.identifier.volume 9 en_US
dc.identifier.wos WOS:000316168700003 en_US
dc.identifier.wosquality Q1
dc.institutionauthor Eşsiz, Şebnem en_US
dc.language.iso en en_US
dc.publisher Amer Chemical Soc en_US
dc.relation.journal Journal Of Chemical Theory And Computation en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 7
dc.title Computational Analysis of a Zn-Bound Tris(imidazolyl) Calix[6]arene Aqua Complex: Toward Incorporating Second-Coordination Sphere Effects Into Carbonic Anhydrase Biomimetics en_US
dc.type Article en_US
dc.wos.citedbyCount 5
dspace.entity.type Publication
relation.isAuthorOfPublication a83da4e2-c934-413a-886f-2438d0a3fd58
relation.isAuthorOfPublication.latestForDiscovery a83da4e2-c934-413a-886f-2438d0a3fd58
relation.isOrgUnitOfPublication 71ce8622-7449-4a6a-8fad-44d881416546
relation.isOrgUnitOfPublication.latestForDiscovery 71ce8622-7449-4a6a-8fad-44d881416546

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Computational Analysis of a Zn-Bound Tris.pdf
Size:
1.7 MB
Format:
Adobe Portable Document Format
Description: