A Comparative Study of Metaheuristic Algorithms for Wave Energy Converter Power Take-Off Optimisation: A Case Study for Eastern Australia

Loading...
Thumbnail Image

Date

2021

Authors

Golbaz, Danial
Asadi, Rojin
Nasiri, Mandieh
Ceylan, Oğuzhan
Nezhad, Meysam Majidi
Neshat, Mehdi

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Abstract

One of the most encouraging sorts of renewable energy is ocean wave energy. In spite of a large number of investigations in this field during the last decade, wave energy technologies are recognised as neither mature nor broadly commercialised compared to other renewable energy technologies. In this paper, we develop and optimise Power Take-off (PTO) configurations of a well-known wave energy converter (WEC) called a point absorber. This WEC is a fully submerged buoy with three tethers, which was proposed and developed by Carnegie Clean Energy Company in Australia. Optimising the WEC's PTO parameters is a challenging engineering problem due to the high dimensionality and complexity of the search space. This research compares the performance of five state-of-the-art metaheuristics (including Covariance Matrix Adaptation Evolution Strategy, Gray Wolf optimiser, Harris Hawks optimisation, and Grasshopper Optimisation Algorithm) based on the real wave scenario in Sydney sea state. The experimental achievements show that the Multiverse optimisation (MVO) algorithm performs better than the other metaheuristics applied in this work.

Description

Keywords

wave energy converter, power take-off system, optimisation, evolutionary algorithms, metaheuristic

Turkish CoHE Thesis Center URL

Fields of Science

Citation

16

WoS Q

N/A

Scopus Q

N/A

Source

Volume

9

Issue

5

Start Page

End Page