A Comparative Study of Surrogate Based Learning Methods in Solving Power Flow Problem

dc.contributor.authorCeylan, Oğuzhan
dc.contributor.authorTaşkın, Gülsen
dc.contributor.authorPaudyal, Sumit
dc.date.accessioned2021-01-28T10:47:28Z
dc.date.available2021-01-28T10:47:28Z
dc.date.issued2020
dc.departmentFakülteler, İşletme Fakültesi, Yönetim Bilişim Sistemleri Bölümüen_US
dc.description.abstractDue to increasing volume of measurements in smart grids, surrogate based learning approaches for modeling the power grids are becoming popular. This paper uses regression based models to find the unknown state variables on power systems. Generally, to determine these states, nonlinear systems of power flow equations are solved iteratively. This study considers that the power flow problem can be modeled as an data driven type of a model. Then, the state variables, i.e., voltage magnitudes and phase angles are obtained using machine learning based approaches, namely, Extreme Learning Machine (ELM), Gaussian Process Regression (GPR), and Support Vector Regression (SVR). Several simulations are performed on the IEEE 14 and 30-Bus test systems to validate surrogate based learning based models. Moreover, input data was modified with noise to simulate measurement errors. Numerical results showed that all three models can find state variables reasonably well even with measurement noise.en_US
dc.identifier.citation1
dc.identifier.doi10.1109/PESGM41954.2020.9281640en_US
dc.identifier.isbn9781728155081
dc.identifier.issn1944-9925en_US
dc.identifier.issn1944-9925
dc.identifier.scopus2-s2.0-85099135478en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12469/3767
dc.identifier.urihttps://doi.org/10.1109/PESGM41954.2020.9281640
dc.identifier.wosWOS:000679246601021en_US
dc.institutionauthorCeylan, Oğuzhanen_US
dc.institutionauthorCeylan, Oğuzhan
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.journalIEEE Power and Energy Society General Meetingen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/embargoedAccessen_US
dc.subjectGaussian process regressionen_US
dc.subjectMachine learningen_US
dc.subjectPower systemsen_US
dc.subjectSupport vector regressionen_US
dc.titleA Comparative Study of Surrogate Based Learning Methods in Solving Power Flow Problemen_US
dc.typeConference Objecten_US
dspace.entity.typePublication
relation.isAuthorOfPublicationb80c3194-906c-4e78-a54c-e3cd1effc970
relation.isAuthorOfPublication.latestForDiscoveryb80c3194-906c-4e78-a54c-e3cd1effc970

Files