Feedback-Based Quantum Algorithm for Excited States Calculation

Loading...
Publication Logo

Date

2026

Journal Title

Journal ISSN

Volume Title

Publisher

Institute of Electrical and Electronics Engineers Inc.

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Journal Issue

Abstract

Recently, feedback-based quantum algorithms have been introduced to calculate the ground states of Hamiltonians, inspired by quantum Lyapunov control theory. This paper aims to generalize these algorithms to the problem of calculating an eigenstate of a given Hamiltonian, assuming that the lower energy eigenstates are known. To this aim, we propose a new design methodology that combines the layer wise construction of the quantum circuit in feedback-based quantum algorithms with a new feedback law based on a new Lyapunov function to assign the quantum circuit parameters. We present two approaches for evaluating the circuit parameters: one based on the expectation and overlap estimation of the terms in the feedback law and another based on the gradient of the Lyapunov function. We demonstrate the algorithm through an illustrative example and through an application in quantum chemistry. To assess its performance, we conduct numerical simulations and execution on IBM's superconducting quantum computer. © 2020 IEEE.

Description

Keywords

Excited States, Feedback-Based Quantum Algorithms, NISQ Devices, Quantum Lyapunov Control, Variational Quantum Algorithms

Fields of Science

Citation

WoS Q

N/A

Scopus Q

N/A
OpenCitations Logo
OpenCitations Citation Count
N/A

Source

IEEE Transactions on Quantum Engineering

Volume

Issue

Start Page

End Page

PlumX Metrics
Citations

Scopus : 0

Google Scholar Logo
Google Scholar™

Sustainable Development Goals

SDG data is not available