Joint Communication and Computing Resource Allocation in 5g Cloud Radio Access Networks

No Thumbnail Available

Date

2019

Journal Title

Journal ISSN

Volume Title

Publisher

IEEE-Inst Electrical Electronics Engineers Inc

Open Access Color

Green Open Access

No

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Top 10%
Influence
Top 10%
Popularity
Top 10%

Research Projects

Journal Issue

Abstract

Cloud-radio access network (C-RAN) is regarded as a promising solution to manage heterogeneity and scalability of future wireless networks. The centralized cooperative resource allocation and interference cancellation methods in C-RAN significantly reduce the interference levels to provide high data rates. However, the centralized solution is not scalable due to the dense deployment of small cells with fractional frequency reuse, causing severe inter-tier and inter-cell interference turning the resource allocation and user association into a more challenging problem. In this paper, we investigate joint communication and computing resource allocation along with user association, and baseband unit (BBU) and remote radio head (RRH) mapping in C-RANs. We initially establish a queueing model in C-RAN, followed by formulation of two optimization problems for communication [e.g., resource blocks (RBs) and power] and computing [e.g., virtual machines (VMs)] resources allocation with the aim to minimize mean response time. User association along with the RB allocation, interference, and queueing stability constraints are considered in the communication resource optimization problem. The computing resource optimization problem considers BBU-RRH mapping and VM allocation for small cells, constrained to BBU server capacity and queueing stability. To solve the communication and computing resource optimization problem, we propose a joint resource allocation solution that considers a double-sided auction based distributed resource allocation (DS-ADRA) method, where small cell base stations and users jointly participate using the concept of auction theory. The proposed method is evaluated via simulations by considering the effect of bandwidth utilization percentage, signal-to-interference ratio threshold value and the number of users. The results show that the proposed method can be successfully implemented for 5G C-RANs.

Description

Keywords

Distributed resource allocation, User association, BBU-RRH mapping, VM Allocation, C-RAN, Auction Theory, Distributed resource allocation, BBU-RRH mapping, Auction Theory, C-RAN, User association, VM Allocation

Turkish CoHE Thesis Center URL

Fields of Science

0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology

Citation

WoS Q

Q1

Scopus Q

Q1
OpenCitations Logo
OpenCitations Citation Count
37

Source

IEEE Transactions on Vehicular Technology

Volume

68

Issue

9

Start Page

9122

End Page

9135
PlumX Metrics
Citations

CrossRef : 22

Scopus : 55

Captures

Mendeley Readers : 33

SCOPUS™ Citations

55

checked on Feb 01, 2026

Web of Science™ Citations

52

checked on Feb 01, 2026

Page Views

5

checked on Feb 01, 2026

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
3.75712829

Sustainable Development Goals

3

GOOD HEALTH AND WELL-BEING
GOOD HEALTH AND WELL-BEING Logo

8

DECENT WORK AND ECONOMIC GROWTH
DECENT WORK AND ECONOMIC GROWTH Logo

10

REDUCED INEQUALITIES
REDUCED INEQUALITIES Logo

14

LIFE BELOW WATER
LIFE BELOW WATER Logo

16

PEACE, JUSTICE AND STRONG INSTITUTIONS
PEACE, JUSTICE AND STRONG INSTITUTIONS Logo

17

PARTNERSHIPS FOR THE GOALS
PARTNERSHIPS FOR THE GOALS Logo