A New Fog-Based Transmission Scheduler on the Internet of Multimedia Things Using a Fuzzy-Based Quantum Genetic Algorithm

dc.authorscopusid 57212168473
dc.authorscopusid 57205482293
dc.authorscopusid 55897274300
dc.authorscopusid 57780713800
dc.contributor.author Zanbouri, K.
dc.contributor.author Jafari Navimipour, Nima
dc.contributor.author Al-Khafaji, H.M.R.
dc.contributor.author Jafari Navimipour, N.
dc.contributor.author Yalcin, S.
dc.contributor.other Computer Engineering
dc.date.accessioned 2023-10-19T15:05:28Z
dc.date.available 2023-10-19T15:05:28Z
dc.date.issued 2023
dc.department-temp Zanbouri, K., Department of Computer Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran; Al-Khafaji, H.M.R., Biomedical Engineering Department, Al-Mustaqbal University College, Hillah, Iraq; Jafari Navimipour, N., Department of Computer Engineering, Kadir Has University, Istanbul, Turkey; Yalcin, S., Department of Computer Engineering, Nisantasi University, Istanbul, Turkey en_US
dc.description.abstract The Internet of Multimedia Things (IoMT) has recently experienced a considerable surge in multimedia-based services. Due to the fast proliferation and transfer of massive data, the IoMT has service quality challenges. This paper proposes a novel fog-based multimedia transmission scheme for IoMT using the Sugano interference system with a quantum genetic optimization algorithm. The fuzzy system devises a mathematically organized strategy for generating fuzzy rules from input and output variables. The Quantum Genetic Algorithm (QGA) is a metaheuristic algorithm that combines genetic algorithms and quantum computing theory. It combines many critical elements of quantum computing, such as quantum superposition and entanglement. This provides a robust representation of population diversity and the capacity to achieve rapid convergence and high accuracy. As a result of the simulations and computational analysis, the proposed fuzzy-based QGA scheme improves packet delivery ratio and throughput by reducing end-to-end latency and delay when compared to traditional algorithms like Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Heterogeneous Earliest-Finish-Time (HEFT) and Ant Colony Optimization (ACO). Consequently, it provides a more efficient scheme for multimedia transmission in IoMT. IEEE en_US
dc.identifier.citationcount 4
dc.identifier.doi 10.1109/MMUL.2023.3247522 en_US
dc.identifier.endpage 12 en_US
dc.identifier.issn 1070-986X
dc.identifier.scopus 2-s2.0-85149369843 en_US
dc.identifier.scopusquality Q1
dc.identifier.startpage 1 en_US
dc.identifier.uri https://doi.org/10.1109/MMUL.2023.3247522
dc.identifier.uri https://hdl.handle.net/20.500.12469/4907
dc.identifier.wosquality Q1
dc.khas 20231019-Scopus en_US
dc.language.iso en en_US
dc.publisher IEEE Computer Society en_US
dc.relation.ispartof IEEE Multimedia en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 8
dc.subject Cloud computing en_US
dc.subject Genetic algorithms en_US
dc.subject Internet of Things en_US
dc.subject Multimedia systems en_US
dc.subject Optimization en_US
dc.subject Quantum computing en_US
dc.subject Task analysis en_US
dc.subject Codes (symbols) en_US
dc.subject Fuzzy inference en_US
dc.subject Genetic algorithms en_US
dc.subject Internet of things en_US
dc.subject Multimedia services en_US
dc.subject Multimedia systems en_US
dc.subject Particle swarm optimization (PSO) en_US
dc.subject Quantum entanglement en_US
dc.subject Cloud-computing en_US
dc.subject Massive data en_US
dc.subject Multimedia transmissions en_US
dc.subject Optimisations en_US
dc.subject Quality challenges en_US
dc.subject Quantum Computing en_US
dc.subject Quantum genetic algorithm en_US
dc.subject Service Quality en_US
dc.subject Task analysis en_US
dc.subject Transmission schemes en_US
dc.subject Ant colony optimization en_US
dc.title A New Fog-Based Transmission Scheduler on the Internet of Multimedia Things Using a Fuzzy-Based Quantum Genetic Algorithm en_US
dc.type Article en_US
dspace.entity.type Publication
relation.isAuthorOfPublication 0fb3c7a0-c005-4e5f-a9ae-bb163df2df8e
relation.isAuthorOfPublication.latestForDiscovery 0fb3c7a0-c005-4e5f-a9ae-bb163df2df8e
relation.isOrgUnitOfPublication fd8e65fe-c3b3-4435-9682-6cccb638779c
relation.isOrgUnitOfPublication.latestForDiscovery fd8e65fe-c3b3-4435-9682-6cccb638779c

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
4907.pdf
Size:
1.35 MB
Format:
Adobe Portable Document Format
Description:
Tam Metin / Full Text