Comparison of Compressed Sensing Based Algorithms for Sparse Signal Reconstruction

dc.contributor.authorErküçük, Serhat
dc.contributor.authorBaşaran, Mehmet
dc.contributor.authorErküçük, Serhat
dc.contributor.authorÇırpan, Hakan Ali
dc.date.accessioned2019-06-27T08:01:58Z
dc.date.available2019-06-27T08:01:58Z
dc.date.issued2016
dc.departmentFakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümüen_US
dc.description.abstractCompressed sensing theory shows that any signal which is defined as sparse in a given domain can be reconstructed using fewer linear projections instead of using all Nyquist-rate samples. In this paper we investigate basis pursuit matching pursuit orthogonal matching pursuit and compressive sampling matching pursuit algorithms which are basic compressed sensing based algorithms and present performance curves in terms of mean squared error for various parameters including signal-tonoise ratio sparsity and number of measurements with regard to mean squared error. In addition accuracy of estimation performances has been supported with theoretical lower bounds (Cramer-Rao lower bound and deterministic lower mean squared error). Considering estimation performances compressive sampling matching pursuit yields the best results unless the signal has a non-sparse structure.en_US]
dc.identifier.citation5
dc.identifier.doi10.1109/SIU.2016.7496021en_US
dc.identifier.endpage1444
dc.identifier.isbn9781509016792
dc.identifier.scopus2-s2.0-84982796354en_US
dc.identifier.scopusqualityN/A
dc.identifier.startpage1441en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12469/517
dc.identifier.urihttps://doi.org/10.1109/SIU.2016.7496021
dc.identifier.wosWOS:000391250900337en_US
dc.identifier.wosqualityN/A
dc.institutionauthorErküçük, Serhaten_US
dc.language.isotren_US
dc.publisherIEEEen_US
dc.relation.journal2016 24th Signal Processing And Communication Application Conference (SIU)en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectCompressed Sensingen_US
dc.subjectGreedy Methodsen_US
dc.subjectCramer-Rao Lower Bounden_US
dc.titleComparison of Compressed Sensing Based Algorithms for Sparse Signal Reconstructionen_US
dc.typeConference Objecten_US
dspace.entity.typePublication
relation.isAuthorOfPublication440e977b-46c6-40d4-b970-99b1e357c998
relation.isAuthorOfPublication.latestForDiscovery440e977b-46c6-40d4-b970-99b1e357c998

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Comparison of Compressed Sensing Based Algorithms for Sparse Signal Reconstruction.pdf
Size:
305.42 KB
Format:
Adobe Portable Document Format
Description: