Comparison of Compressed Sensing Based Algorithms for Sparse Signal Reconstruction

gdc.relation.journal 2016 24th Signal Processing And Communication Application Conference (SIU) en_US
dc.contributor.author Çelik, Safa
dc.contributor.author Başaran, Mehmet
dc.contributor.author Erküçük, Serhat
dc.contributor.author Çırpan, Hakan Ali
dc.contributor.other Electrical-Electronics Engineering
dc.contributor.other 05. Faculty of Engineering and Natural Sciences
dc.contributor.other 01. Kadir Has University
dc.date.accessioned 2019-06-27T08:01:58Z
dc.date.available 2019-06-27T08:01:58Z
dc.date.issued 2016
dc.description.abstract Compressed sensing theory shows that any signal which is defined as sparse in a given domain can be reconstructed using fewer linear projections instead of using all Nyquist-rate samples. In this paper we investigate basis pursuit matching pursuit orthogonal matching pursuit and compressive sampling matching pursuit algorithms which are basic compressed sensing based algorithms and present performance curves in terms of mean squared error for various parameters including signal-tonoise ratio sparsity and number of measurements with regard to mean squared error. In addition accuracy of estimation performances has been supported with theoretical lower bounds (Cramer-Rao lower bound and deterministic lower mean squared error). Considering estimation performances compressive sampling matching pursuit yields the best results unless the signal has a non-sparse structure. en_US]
dc.identifier.citationcount 5
dc.identifier.doi 10.1109/SIU.2016.7496021 en_US
dc.identifier.isbn 9781509016792
dc.identifier.scopus 2-s2.0-84982796354 en_US
dc.identifier.uri https://hdl.handle.net/20.500.12469/517
dc.identifier.uri https://doi.org/10.1109/SIU.2016.7496021
dc.language.iso tr en_US
dc.publisher IEEE en_US
dc.relation.ispartof 2016 24th Signal Processing and Communication Application Conference (SIU)
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Compressed Sensing en_US
dc.subject Greedy Methods en_US
dc.subject Cramer-Rao Lower Bound en_US
dc.title Comparison of Compressed Sensing Based Algorithms for Sparse Signal Reconstruction en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.institutional Erküçük, Serhat en_US
gdc.author.institutional Erküçük, Serhat
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::conference output
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü en_US
gdc.description.endpage 1444
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.startpage 1441 en_US
gdc.identifier.openalex W2436826437
gdc.identifier.wos WOS:000391250900337 en_US
gdc.oaire.diamondjournal false
gdc.oaire.impulse 2.0
gdc.oaire.influence 3.0439915E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Greedy Methods
gdc.oaire.keywords Compressed Sensing
gdc.oaire.keywords Cramer-Rao Lower Bound
gdc.oaire.popularity 5.7414082E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.fwci 0.644
gdc.openalex.normalizedpercentile 0.74
gdc.opencitations.count 6
gdc.plumx.crossrefcites 4
gdc.plumx.mendeley 3
gdc.plumx.scopuscites 6
gdc.scopus.citedcount 6
gdc.wos.citedcount 5
relation.isAuthorOfPublication 440e977b-46c6-40d4-b970-99b1e357c998
relation.isAuthorOfPublication.latestForDiscovery 440e977b-46c6-40d4-b970-99b1e357c998
relation.isOrgUnitOfPublication 12b0068e-33e6-48db-b92a-a213070c3a8d
relation.isOrgUnitOfPublication 2457b9b3-3a3f-4c17-8674-7f874f030d96
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery 12b0068e-33e6-48db-b92a-a213070c3a8d

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Comparison of Compressed Sensing Based Algorithms for Sparse Signal Reconstruction.pdf
Size:
305.42 KB
Format:
Adobe Portable Document Format
Description: