Comparison of Compressed Sensing Based Algorithms for Sparse Signal Reconstruction
| gdc.relation.journal | 2016 24th Signal Processing And Communication Application Conference (SIU) | en_US |
| dc.contributor.author | Çelik, Safa | |
| dc.contributor.author | Başaran, Mehmet | |
| dc.contributor.author | Erküçük, Serhat | |
| dc.contributor.author | Çırpan, Hakan Ali | |
| dc.contributor.other | Electrical-Electronics Engineering | |
| dc.contributor.other | 05. Faculty of Engineering and Natural Sciences | |
| dc.contributor.other | 01. Kadir Has University | |
| dc.date.accessioned | 2019-06-27T08:01:58Z | |
| dc.date.available | 2019-06-27T08:01:58Z | |
| dc.date.issued | 2016 | |
| dc.description.abstract | Compressed sensing theory shows that any signal which is defined as sparse in a given domain can be reconstructed using fewer linear projections instead of using all Nyquist-rate samples. In this paper we investigate basis pursuit matching pursuit orthogonal matching pursuit and compressive sampling matching pursuit algorithms which are basic compressed sensing based algorithms and present performance curves in terms of mean squared error for various parameters including signal-tonoise ratio sparsity and number of measurements with regard to mean squared error. In addition accuracy of estimation performances has been supported with theoretical lower bounds (Cramer-Rao lower bound and deterministic lower mean squared error). Considering estimation performances compressive sampling matching pursuit yields the best results unless the signal has a non-sparse structure. | en_US] |
| dc.identifier.citationcount | 5 | |
| dc.identifier.doi | 10.1109/SIU.2016.7496021 | en_US |
| dc.identifier.isbn | 9781509016792 | |
| dc.identifier.scopus | 2-s2.0-84982796354 | en_US |
| dc.identifier.uri | https://hdl.handle.net/20.500.12469/517 | |
| dc.identifier.uri | https://doi.org/10.1109/SIU.2016.7496021 | |
| dc.language.iso | tr | en_US |
| dc.publisher | IEEE | en_US |
| dc.relation.ispartof | 2016 24th Signal Processing and Communication Application Conference (SIU) | |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Compressed Sensing | en_US |
| dc.subject | Greedy Methods | en_US |
| dc.subject | Cramer-Rao Lower Bound | en_US |
| dc.title | Comparison of Compressed Sensing Based Algorithms for Sparse Signal Reconstruction | en_US |
| dc.type | Conference Object | en_US |
| dspace.entity.type | Publication | |
| gdc.author.institutional | Erküçük, Serhat | en_US |
| gdc.author.institutional | Erküçük, Serhat | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::conference output | |
| gdc.description.department | Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü | en_US |
| gdc.description.endpage | 1444 | |
| gdc.description.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
| gdc.description.startpage | 1441 | en_US |
| gdc.identifier.openalex | W2436826437 | |
| gdc.identifier.wos | WOS:000391250900337 | en_US |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 2.0 | |
| gdc.oaire.influence | 3.0439915E-9 | |
| gdc.oaire.isgreen | true | |
| gdc.oaire.keywords | Greedy Methods | |
| gdc.oaire.keywords | Compressed Sensing | |
| gdc.oaire.keywords | Cramer-Rao Lower Bound | |
| gdc.oaire.popularity | 5.7414082E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0202 electrical engineering, electronic engineering, information engineering | |
| gdc.oaire.sciencefields | 02 engineering and technology | |
| gdc.openalex.fwci | 0.644 | |
| gdc.openalex.normalizedpercentile | 0.74 | |
| gdc.opencitations.count | 6 | |
| gdc.plumx.crossrefcites | 4 | |
| gdc.plumx.mendeley | 3 | |
| gdc.plumx.scopuscites | 6 | |
| gdc.scopus.citedcount | 6 | |
| gdc.wos.citedcount | 5 | |
| relation.isAuthorOfPublication | 440e977b-46c6-40d4-b970-99b1e357c998 | |
| relation.isAuthorOfPublication.latestForDiscovery | 440e977b-46c6-40d4-b970-99b1e357c998 | |
| relation.isOrgUnitOfPublication | 12b0068e-33e6-48db-b92a-a213070c3a8d | |
| relation.isOrgUnitOfPublication | 2457b9b3-3a3f-4c17-8674-7f874f030d96 | |
| relation.isOrgUnitOfPublication | b20623fc-1264-4244-9847-a4729ca7508c | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 12b0068e-33e6-48db-b92a-a213070c3a8d |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Comparison of Compressed Sensing Based Algorithms for Sparse Signal Reconstruction.pdf
- Size:
- 305.42 KB
- Format:
- Adobe Portable Document Format
- Description: