Brain Age Estimation from MRI Images using 2D-CNN instead of 3D-CNN

dc.contributor.authorDarıcı, Muazzez Buket
dc.contributor.authorYıldırım, Şüheda
dc.contributor.authorDarici, Muazzez Buket
dc.date.accessioned2023-10-19T14:55:52Z
dc.date.available2023-10-19T14:55:52Z
dc.date.issued2021
dc.department-tempİstanbul Üniversitesi, Bilişim Bölümü, İstanbul, Türkiye -- Kadir Has Üniversitesi, İktisadi, İdari ve Sosyal Bilimler Fakültesi, Yönetim Bilişim Sistemleri, İstanbul, Türkiye -- Kadir Has Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik - Elektronik Mühendisliği, İstanbul, Türkiyeen_US
dc.description.abstractHuman Brain Age has become a popular aging biomarker and is used to detect differences among healthy individuals. Because of the specific changes in the human brain with aging, it is possible to estimate patients’ brain ages from their brain images. Due to developments of the ability of CNN in classification and regression from images, in this study, one of the most popular state of the art models, the DenseNet model, is utilized to estimate human brain ages using transfer learning. Since this process requires high memory load with 3D-CNN, 2D-CNN is preferred for the task of Brain Age Estimation (BAE). In this study, some experiments are carried out to reduce the number of computations while preserving the total performance. With this aim, center slices of each three brain planes are used as the inputs of the DenseNet model, and different optimizers such as Adam, Adamax and Adagrad are used for each model. The dataset is selected from the IXI (Information Extraction from Images) MRI data repository. The MAE evaluation metric is used for each model with different input set to evaluate performance. The best achieved Mean Absolute Error (MAE) is 6.3 with the input set which consisted of center slices of the sagittal plane of brain scan and the Adamax parameter.en_US
dc.identifier.citation0
dc.identifier.doi10.26650/acin.911202
dc.identifier.endpage385en_US
dc.identifier.issn2602-3563
dc.identifier.issue2en_US
dc.identifier.scopusqualityN/A
dc.identifier.startpage373en_US
dc.identifier.trdizinid519985en_US]
dc.identifier.trdizinid519985en_US].
dc.identifier.urihttps://doi.org/10.26650/acin.911202
dc.identifier.urihttps://search.trdizin.gov.tr/yayin/detay/519985
dc.identifier.urihttps://hdl.handle.net/20.500.12469/4593
dc.identifier.volume5en_US
dc.identifier.wosqualityN/A
dc.language.isoenen_US
dc.relation.ispartofActa Infologicaen_US
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.titleBrain Age Estimation from MRI Images using 2D-CNN instead of 3D-CNNen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationb5442f04-afe8-48f2-86ef-b8c23df8b01e
relation.isAuthorOfPublication.latestForDiscoveryb5442f04-afe8-48f2-86ef-b8c23df8b01e

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
4593.pdf
Size:
1.03 MB
Format:
Adobe Portable Document Format
Description:
Tam Metin / Full Text