Brain Age Estimation From Mri Images Using 2d-Cnn Instead of 3d-Cnn

dc.contributor.author Gezer, Murat
dc.contributor.author Darıcı, Muazzez Buket
dc.contributor.author Yıldırım, Şüheda
dc.contributor.author Darici, Muazzez Buket
dc.contributor.other Electrical-Electronics Engineering
dc.date.accessioned 2023-10-19T14:55:52Z
dc.date.available 2023-10-19T14:55:52Z
dc.date.issued 2021
dc.department-temp İstanbul Üniversitesi, Bilişim Bölümü, İstanbul, Türkiye -- Kadir Has Üniversitesi, İktisadi, İdari ve Sosyal Bilimler Fakültesi, Yönetim Bilişim Sistemleri, İstanbul, Türkiye -- Kadir Has Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik - Elektronik Mühendisliği, İstanbul, Türkiye en_US
dc.description.abstract Human Brain Age has become a popular aging biomarker and is used to detect differences among healthy individuals. Because of the specific changes in the human brain with aging, it is possible to estimate patients’ brain ages from their brain images. Due to developments of the ability of CNN in classification and regression from images, in this study, one of the most popular state of the art models, the DenseNet model, is utilized to estimate human brain ages using transfer learning. Since this process requires high memory load with 3D-CNN, 2D-CNN is preferred for the task of Brain Age Estimation (BAE). In this study, some experiments are carried out to reduce the number of computations while preserving the total performance. With this aim, center slices of each three brain planes are used as the inputs of the DenseNet model, and different optimizers such as Adam, Adamax and Adagrad are used for each model. The dataset is selected from the IXI (Information Extraction from Images) MRI data repository. The MAE evaluation metric is used for each model with different input set to evaluate performance. The best achieved Mean Absolute Error (MAE) is 6.3 with the input set which consisted of center slices of the sagittal plane of brain scan and the Adamax parameter. en_US
dc.identifier.citationcount 0
dc.identifier.doi 10.26650/acin.911202
dc.identifier.endpage 385 en_US
dc.identifier.issn 2602-3563
dc.identifier.issue 2 en_US
dc.identifier.startpage 373 en_US
dc.identifier.trdizinid 519985 en_US].
dc.identifier.trdizinid 519985 en_US]
dc.identifier.uri https://doi.org/10.26650/acin.911202
dc.identifier.uri https://search.trdizin.gov.tr/yayin/detay/519985
dc.identifier.uri https://hdl.handle.net/20.500.12469/4593
dc.identifier.volume 5 en_US
dc.language.iso en en_US
dc.relation.ispartof Acta Infologica en_US
dc.relation.publicationcategory Makale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.title Brain Age Estimation From Mri Images Using 2d-Cnn Instead of 3d-Cnn en_US
dc.type Article en_US
dspace.entity.type Publication
relation.isAuthorOfPublication b5442f04-afe8-48f2-86ef-b8c23df8b01e
relation.isAuthorOfPublication.latestForDiscovery b5442f04-afe8-48f2-86ef-b8c23df8b01e
relation.isOrgUnitOfPublication 12b0068e-33e6-48db-b92a-a213070c3a8d
relation.isOrgUnitOfPublication.latestForDiscovery 12b0068e-33e6-48db-b92a-a213070c3a8d

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
4593.pdf
Size:
1.03 MB
Format:
Adobe Portable Document Format
Description:
Tam Metin / Full Text