Bianchi Surfaces Whose Asymptotic Lines Are Geodesic Parallels

dc.contributor.author Arsan, Güler Gürpınar
dc.contributor.author Özdeğer, Abdulkadir
dc.date.accessioned 2019-06-27T08:02:39Z
dc.date.available 2019-06-27T08:02:39Z
dc.date.issued 2015
dc.description.abstract It is proved that every Bianchi surface in E-3 of class C-4 whose asymptotic lines are geodesic parallels is either a helicoid or a surface of revolution. en_US]
dc.identifier.citationcount 0
dc.identifier.doi 10.1515/advgeom-2014-0020 en_US
dc.identifier.endpage 6
dc.identifier.issn 1615-715X en_US
dc.identifier.issn 1615-7168 en_US
dc.identifier.issn 1615-715X
dc.identifier.issn 1615-7168
dc.identifier.issue 1
dc.identifier.scopus 2-s2.0-84921383813 en_US
dc.identifier.scopusquality Q3
dc.identifier.startpage 1 en_US
dc.identifier.uri https://hdl.handle.net/20.500.12469/661
dc.identifier.volume 15 en_US
dc.identifier.wos WOS:000347957600001 en_US
dc.identifier.wosquality Q3
dc.language.iso en en_US
dc.publisher Walter De Gruyter Gmbh en_US
dc.relation.journal Advances In Geometry en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 0
dc.subject Bianchi surface en_US
dc.subject Asymptotic Line en_US
dc.subject Geodesic Parallel en_US
dc.subject Geodesic Ellipse en_US
dc.subject Geodesic Hyperbola en_US
dc.subject Helicoidal Surface en_US
dc.title Bianchi Surfaces Whose Asymptotic Lines Are Geodesic Parallels en_US
dc.type Article en_US
dc.wos.citedbyCount 0
dspace.entity.type Publication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Bianchi surfaces whose asymptotic lines are geodesic parallels.pdf
Size:
389.1 KB
Format:
Adobe Portable Document Format
Description: