Bianchi surfaces whose asymptotic lines are geodesic parallels

dc.contributor.authorArsan, Güler Gürpınar
dc.contributor.authorÖzdeğer, Abdulkadir
dc.date.accessioned2019-06-27T08:02:39Z
dc.date.available2019-06-27T08:02:39Z
dc.date.issued2015
dc.description.abstractIt is proved that every Bianchi surface in E-3 of class C-4 whose asymptotic lines are geodesic parallels is either a helicoid or a surface of revolution.en_US]
dc.identifier.citation0
dc.identifier.doi10.1515/advgeom-2014-0020en_US
dc.identifier.endpage6
dc.identifier.issn1615-715Xen_US
dc.identifier.issn1615-7168en_US
dc.identifier.issn1615-715X
dc.identifier.issn1615-7168
dc.identifier.issue1
dc.identifier.scopus2-s2.0-84921383813en_US
dc.identifier.scopusqualityQ3
dc.identifier.startpage1en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12469/661
dc.identifier.volume15en_US
dc.identifier.wosWOS:000347957600001en_US
dc.identifier.wosqualityQ3
dc.language.isoenen_US
dc.publisherWalter De Gruyter Gmbhen_US
dc.relation.journalAdvances In Geometryen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBianchi surfaceen_US
dc.subjectAsymptotic Lineen_US
dc.subjectGeodesic Parallelen_US
dc.subjectGeodesic Ellipseen_US
dc.subjectGeodesic Hyperbolaen_US
dc.subjectHelicoidal Surfaceen_US
dc.titleBianchi surfaces whose asymptotic lines are geodesic parallelsen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Bianchi surfaces whose asymptotic lines are geodesic parallels.pdf
Size:
389.1 KB
Format:
Adobe Portable Document Format
Description: