Gelation Mechanisms

No Thumbnail Available

Date

2012

Authors

Pekcan, Önder
Kara, Selim

Journal Title

Journal ISSN

Volume Title

Publisher

World Scientific Publ Co Pte Ltd

Open Access Color

Green Open Access

No

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Average
Influence
Average
Popularity
Top 10%

Research Projects

Journal Issue

Abstract

In this paper, we survey the gelation mechanisms for various polymeric systems which are classified by the type and the strength of the cross-linkages. These are the "irreversible" gels that are cross-linked chemically by covalent bonds and the "reversible" gels that are cross-linked physically by hydrogen or ionic bonds and by the physical entanglement of polymer chains. Some of the natural polymer gels fall into the class of physical gels, among which the red algae that has attracted attention for various applications is discussed in detail. Various composite gels, formed from mixture of physical and chemical gels are also discussed in the last section of the article. Theoretical models describe the gelation as a process of random linking of subunits to larger and larger molecules by formation of an infinite network, where no matter what type of objects are linked, there is always a critical "gel point" at which the system behaves neither as a liquid nor as a solid on any length scale. The Flory-Stockmayer theory and percolation theory provide bases for modeling this sol-gel phase transition. The experimental techniques for measuring the critical exponents for sol-gel phase transitions in different polymeric systems are introduced and the validation of various theoretical predictions are surveyed.

Description

Keywords

Gelation, Percolation, Chemical Gels, Physical Gels, Composite Gels

Turkish CoHE Thesis Center URL

Fields of Science

02 engineering and technology, 0210 nano-technology, 01 natural sciences, 0104 chemical sciences

Citation

WoS Q

Q1

Scopus Q

Q2
OpenCitations Logo
OpenCitations Citation Count
18

Source

Modern Physics Letters B

Volume

26

Issue

27

Start Page

1230019

End Page

PlumX Metrics
Citations

CrossRef : 6

Scopus : 22

Captures

Mendeley Readers : 73

SCOPUS™ Citations

22

checked on Feb 08, 2026

Web of Science™ Citations

22

checked on Feb 08, 2026

Page Views

5

checked on Feb 08, 2026

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
0.29364706

Sustainable Development Goals

3

GOOD HEALTH AND WELL-BEING
GOOD HEALTH AND WELL-BEING Logo

7

AFFORDABLE AND CLEAN ENERGY
AFFORDABLE AND CLEAN ENERGY Logo

9

INDUSTRY, INNOVATION AND INFRASTRUCTURE
INDUSTRY, INNOVATION AND INFRASTRUCTURE Logo

11

SUSTAINABLE CITIES AND COMMUNITIES
SUSTAINABLE CITIES AND COMMUNITIES Logo

15

LIFE ON LAND
LIFE ON LAND Logo

17

PARTNERSHIPS FOR THE GOALS
PARTNERSHIPS FOR THE GOALS Logo