Advancing Anomaly Detection in Time Series Data: A Knowledge Distillation Approach with LSTM Model

dc.authorscopusid58733078100
dc.authorscopusid58733078200
dc.authorscopusid57289197300
dc.authorscopusid58734536500
dc.authorscopusid55364564400
dc.authorscopusid6506505859
dc.contributor.authorArsan, Taner
dc.contributor.authorCamlidere,B.
dc.contributor.authorYildiz,E.
dc.contributor.authorGuler,A.K.
dc.contributor.authorAlsan,H.F.
dc.contributor.authorArsan,T.
dc.date.accessioned2024-06-23T21:39:20Z
dc.date.available2024-06-23T21:39:20Z
dc.date.issued2023
dc.departmentKadir Has Universityen_US
dc.department-tempKilinc S., Kadir Has University, Department of Computer Engineering, Istanbul, Turkey; Camlidere B., Turknet, Department of Data Science, Istanbul, Turkey; Yildiz E., Turknet, Department of Data Science, Istanbul, Turkey; Guler A.K., Kadir Has University, Department of Computer Engineering, Istanbul, Turkey; Alsan H.F., Kadir Has University, Department of Computer Engineering, Istanbul, Turkey; Arsan T., Kadir Has University, Department of Computer Engineering, Istanbul, Turkeyen_US
dc.description.abstractThis paper focuses on enhancing anomaly detection in time series data using deep learning techniques. Particularly, it investigates the integration of knowledge distillation with LSTM-based models for improved precision, efficiency, and interpretability. The study outlines objectives such as dataset preprocessing, developing a novel LSTM-knowledge distillation framework, incorporating Grafana, InfluxDB, Flask API with Docker, performance assessment, and practical implications. Results highlight the efficacy of knowledge distillation in enhancing student model performance. The proposed approach enhances anomaly detection, offering a viable solution for real-world applications. © 2023 IEEE.en_US
dc.identifier.citation0
dc.identifier.doi10.1109/ASYU58738.2023.10296674
dc.identifier.isbn979-835030659-0
dc.identifier.scopus2-s2.0-85178280287
dc.identifier.scopusqualityN/A
dc.identifier.urihttps://doi.org/10.1109/ASYU58738.2023.10296674
dc.identifier.urihttps://hdl.handle.net/20.500.12469/5856
dc.identifier.wosqualityN/A
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof2023 Innovations in Intelligent Systems and Applications Conference, ASYU 2023 -- 2023 Innovations in Intelligent Systems and Applications Conference, ASYU 2023 -- 11 October 2023 through 13 October 2023 -- Sivas -- 194153en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAnomaly Detectionen_US
dc.subjectDeep Learningen_US
dc.subjectKnowledge Distillationen_US
dc.subjectLSTMen_US
dc.subjectNetwork Trafficen_US
dc.subjectTime Seriesen_US
dc.titleAdvancing Anomaly Detection in Time Series Data: A Knowledge Distillation Approach with LSTM Modelen_US
dc.typeConference Objecten_US
dspace.entity.typePublication
relation.isAuthorOfPublication7959ea6c-1b30-4fa0-9c40-6311259c0914
relation.isAuthorOfPublication.latestForDiscovery7959ea6c-1b30-4fa0-9c40-6311259c0914

Files