RSSI-Based Indoor Positioning via Adaptive Federated Kalman Filter

dc.authorid AYABAKAN, TARIK/0000-0003-0605-0378
dc.authorid Kerestecioglu, Feza/0000-0001-9722-9458
dc.contributor.author Kerestecioğlu, Feza
dc.contributor.author Kerestecioglu, Feza
dc.contributor.other Computer Engineering
dc.date.accessioned 2023-10-19T15:11:54Z
dc.date.available 2023-10-19T15:11:54Z
dc.date.issued 2022
dc.department-temp [Ayabakan, Tarik] Kadir Has Univ, Dept Elect Elect Engn, TR-34083 Istanbul, Turkey; [Ayabakan, Tarik] TCG Alemdar Command, TR-34083 Istanbul, Turkey; [Kerestecioglu, Feza] Kadir Has Univ, Dept Comp Engn, TR-34083 Istanbul, Turkey en_US
dc.description.abstract In this paper, federated Kalman filter (FKF) is applied for indoor positioning. Position information that is multi-laterated from the distance information obtained using the received signal strengths collected from several access points are processed in a FKF to estimate the position of the target. Two approaches are presented to adjust the information-sharing coefficients of FKF using online measurements. The data collected on a test bed composed of four access points are used to assess and compare the performances of the proposed algorithms. It is shown that the estimation error can be improved considerably by adjusting the information-sharing coefficients online. en_US
dc.identifier.citationcount 4
dc.identifier.doi 10.1109/JSEN.2021.3097249 en_US
dc.identifier.endpage 5308 en_US
dc.identifier.issn 1530-437X
dc.identifier.issn 1558-1748
dc.identifier.issue 6 en_US
dc.identifier.scopus 2-s2.0-85110823145 en_US
dc.identifier.scopusquality Q1
dc.identifier.startpage 5302 en_US
dc.identifier.uri https://doi.org/10.1109/JSEN.2021.3097249
dc.identifier.uri https://hdl.handle.net/20.500.12469/5273
dc.identifier.volume 22 en_US
dc.identifier.wos WOS:000770054800053 en_US
dc.identifier.wosquality Q2
dc.khas 20231019-WoS en_US
dc.language.iso en en_US
dc.publisher IEEE-Inst Electrical Electronics Engineers Inc en_US
dc.relation.ispartof Ieee Sensors Journal en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 11
dc.subject Sensors en_US
dc.subject Kalman filters en_US
dc.subject Sensor fusion en_US
dc.subject Mathematical model en_US
dc.subject Sensor systems en_US
dc.subject Position measurement en_US
dc.subject Location awareness en_US
dc.subject Indoor positioning en_US
dc.subject Kalman filter en_US
dc.subject sensor fusion en_US
dc.title RSSI-Based Indoor Positioning via Adaptive Federated Kalman Filter en_US
dc.type Article en_US
dc.wos.citedbyCount 9
dspace.entity.type Publication
relation.isAuthorOfPublication 3b717ed5-ce95-4f19-b9d0-f544789c28da
relation.isAuthorOfPublication.latestForDiscovery 3b717ed5-ce95-4f19-b9d0-f544789c28da
relation.isOrgUnitOfPublication fd8e65fe-c3b3-4435-9682-6cccb638779c
relation.isOrgUnitOfPublication.latestForDiscovery fd8e65fe-c3b3-4435-9682-6cccb638779c

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
5273.pdf
Size:
1.18 MB
Format:
Adobe Portable Document Format
Description:
Tam Metin / Full Text