Strategic Early Warning System for the French Milk Market: a Graph Theoretical Approach To Foresee Volatility

dc.contributor.author Bisson, Christophe
dc.contributor.author A. Bısson, Chrıstophe Louıs
dc.contributor.author Diner, Öznur Yaşar
dc.contributor.author Yaşar Diner, Öznur
dc.contributor.other Management Information Systems
dc.contributor.other Computer Engineering
dc.date.accessioned 2019-06-27T08:01:23Z
dc.date.available 2019-06-27T08:01:23Z
dc.date.issued 2017
dc.department Fakülteler, İşletme Fakültesi, Yönetim Bilişim Sistemleri Bölümü en_US
dc.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü en_US
dc.description.abstract This paper presents a new approach for developing a Strategic Early Warning System aiming to better detect and interpret weak signals. We chose the milk market as a case study in line with the recent call from the EU Commission for governance tools which help to better address such highly volatile markets. Furthermore on the first of April 2015 the new Common Agricultural Policy ended quotas for milk which led to a milk crisis in the EU. Thus we collaborated with milk experts to get their inputs for a new model to analyse the competitive environment. Consequently we constructed graphs to represent the major factors that affect the milk industry and the relationships between them. We obtained several network measures for this social network such as centrality and density. Some factors appear to have the largest major influence on all the other graph elements while others strongly interact in cliques. Any detected changes in any of these factors will automatically impact the others. Therefore scanning ones competitive environment can allow an organisation to get an early warning to help it avoid an issue (as much as possible) and/or seize an opportunity before its competitors. We conclude that Strategic Early Warning Systems as a corporate foresight approach utilising graph theory can strengthen the governance of markets. (C) 2017 Elsevier Ltd. All rights reserved. en_US]
dc.identifier.citationcount 11
dc.identifier.doi 10.1016/j.futures.2017.01.004 en_US
dc.identifier.endpage 23
dc.identifier.issn 0016-3287 en_US
dc.identifier.issn 1873-6378 en_US
dc.identifier.issn 0016-3287
dc.identifier.issn 1873-6378
dc.identifier.scopus 2-s2.0-85011342778 en_US
dc.identifier.scopusquality Q1
dc.identifier.startpage 10 en_US
dc.identifier.uri https://hdl.handle.net/20.500.12469/364
dc.identifier.uri https://doi.org/10.1016/j.futures.2017.01.004
dc.identifier.volume 87 en_US
dc.identifier.wos WOS:000399625100002 en_US
dc.identifier.wosquality Q1
dc.institutionauthor Bisson, Christophe en_US
dc.institutionauthor Diner, Öznur Yaşar en_US
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.relation.journal Futures en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 15
dc.subject Strategic Early Warning System en_US
dc.subject Scenario analysis en_US
dc.subject Graph theory en_US
dc.subject Corporate foresight en_US
dc.subject Scanning en_US
dc.subject Milk market en_US
dc.title Strategic Early Warning System for the French Milk Market: a Graph Theoretical Approach To Foresee Volatility en_US
dc.type Article en_US
dc.wos.citedbyCount 11
dspace.entity.type Publication
relation.isAuthorOfPublication 020945e6-991f-4ffd-9772-ae1d7018acaa
relation.isAuthorOfPublication 84ac79d3-823a-4abf-9b15-e1383ec8a9f5
relation.isAuthorOfPublication.latestForDiscovery 020945e6-991f-4ffd-9772-ae1d7018acaa
relation.isOrgUnitOfPublication ff62e329-217b-4857-88f0-1dae00646b8c
relation.isOrgUnitOfPublication fd8e65fe-c3b3-4435-9682-6cccb638779c
relation.isOrgUnitOfPublication.latestForDiscovery ff62e329-217b-4857-88f0-1dae00646b8c

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Strategic Early Warning System for the French milk market A graph theoretical approach to foresee volatility.pdf
Size:
662.62 KB
Format:
Adobe Portable Document Format
Description: