The Impact of Evolutionary Computation on Robotic Design: a Case Study With an Underactuated Hand Exoskeleton

dc.contributor.authorStroppa, Fabıo
dc.contributor.authorYuksel, Huseyin Taner
dc.contributor.authorSoylemez, Aleyna
dc.contributor.authorZyada, Mazhar Eid
dc.contributor.authorSarac, Mine
dc.contributor.authorStroppa, Fabio
dc.date.accessioned2024-10-15T19:42:45Z
dc.date.available2024-10-15T19:42:45Z
dc.date.issued2024
dc.departmentKadir Has Universityen_US
dc.department-temp[Akbas, Baris; Yuksel, Huseyin Taner; Soylemez, Aleyna; Stroppa, Fabio] Kadir Has Univ, Comp Engn, Istanbul, Turkiye; [Zyada, Mazhar Eid; Sarac, Mine] Kadir Has Univ, Mechatron Engn, Istanbul, Turkiyeen_US
dc.description.abstractRobotic exoskeletons can enhance human strength and aid people with physical disabilities. However, designing them to ensure safety and optimal performance presents significant challenges. Developing exoskeletons should incorporate specific optimization algorithms to find the best design. This study investigates the potential of Evolutionary Computation (EC) methods in robotic design optimization, with an underactuated hand exoskeleton (U-HEx) used as a case study. We propose improving the performance and usability of the U-HEx design, which was initially optimized using a naive brute-force approach, by integrating EC techniques such as Genetic Algorithm and Big Bang-Big Crunch Algorithm. Comparative analysis revealed that EC methods consistently yield more precise and optimal solutions than brute force in a significantly shorter time. This allowed us to improve the optimization by increasing the number of variables in the design, which was impossible with naive methods. The results show significant improvements in terms of the torque magnitude the device transfers to the user, enhancing its efficiency. These findings underline the importance of performing proper optimization while designing exoskeletons, as well as providing a significant improvement to this specific robotic design.en_US
dc.description.sponsorshipTUBITAK [123M690, 121C145, 121C147]en_US
dc.description.sponsorshipThis work is funded by TUBITAK project number 123M690 and partially funded by TUB.ITAK project number 121C145 and 121C147.en_US
dc.description.woscitationindexConference Proceedings Citation Index - Science
dc.identifier.citationcount0
dc.identifier.doi10.1109/ICRA57147.2024.10611070
dc.identifier.endpage5525en_US
dc.identifier.isbn9798350384581
dc.identifier.isbn9798350384574
dc.identifier.issn1050-4729
dc.identifier.issn2577-087X
dc.identifier.scopus2-s2.0-85202437095
dc.identifier.scopusqualityQ2
dc.identifier.startpage5519en_US
dc.identifier.urihttps://doi.org/10.1109/ICRA57147.2024.10611070
dc.identifier.wosWOS:001294576204041
dc.identifier.wosqualityN/A
dc.institutionauthorStroppa, Fabıo
dc.language.isoenen_US
dc.publisherIeeeen_US
dc.relation.ispartofIEEE International Conference on Robotics and Automation (ICRA) -- MAY 13-17, 2024 -- Yokohama, JAPANen_US
dc.relation.ispartofseriesIEEE International Conference on Robotics and Automation ICRA
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subject[No Keyword Available]en_US
dc.titleThe Impact of Evolutionary Computation on Robotic Design: a Case Study With an Underactuated Hand Exoskeletonen_US
dc.typeConference Objecten_US
dspace.entity.typePublication
relation.isAuthorOfPublicationf8babe23-f015-4905-a50a-4e9567f9ee8d
relation.isAuthorOfPublication.latestForDiscoveryf8babe23-f015-4905-a50a-4e9567f9ee8d

Files