Anomaly Detection İn Walking Trajectory [yürüyüş Yörüngesinde Anormallik Algılama]

dc.contributor.author Öğrenci, Arif Selçuk
dc.date.accessioned 2019-06-28T11:11:19Z
dc.date.available 2019-06-28T11:11:19Z
dc.date.issued 2018
dc.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü en_US
dc.description.abstract Analysis of the walking trajectory and the detection of anomalies in this trajectory provide important benefits in the fields of health and security. In this work two methods to detect anomalies in trajectories are compared. Firstly an unsupervised method is used where the conformance among trajectories are taken into consideration. Trajectories that deviate from others are qualified as anomalies. Secondly the points in the trajectories are considered as a time series. Artifical neural networks performing supervised learning based on the backpropagation algorithm are used. The results are compared and the points to be enhanced are highlighted. en_US]
dc.identifier.citationcount 2
dc.identifier.doi 10.1109/SIU.2018.8404797 en_US
dc.identifier.endpage 4
dc.identifier.isbn 9781538615010
dc.identifier.scopus 2-s2.0-85050824546 en_US
dc.identifier.startpage 1 en_US
dc.identifier.uri https://hdl.handle.net/20.500.12469/1538
dc.identifier.uri https://doi.org/10.1109/SIU.2018.8404797
dc.institutionauthor Öğrenci, Arif Selçuk en_US
dc.language.iso tr en_US
dc.publisher Institute of Electrical and Electronics Engineers Inc. en_US
dc.relation.journal 26th Signal Processing and Communications Applications Conference (SIU) en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 2
dc.subject Anomaly detection en_US
dc.subject Artifical neural networks en_US
dc.subject Conformal prediction en_US
dc.subject Trajectory en_US
dc.title Anomaly Detection İn Walking Trajectory [yürüyüş Yörüngesinde Anormallik Algılama] en_US
dc.type Conference Object en_US
dspace.entity.type Publication

Files