Improving Covid-19 Detection: Leveraging Convolutional Neural Networks in Chest X-Ray Imaging

dc.authorscopusid59206867000
dc.authorscopusid59207602500
dc.authorscopusid6602924425
dc.contributor.authorJamil,M.
dc.contributor.authorChukwu,I.J.
dc.contributor.authorCreutzburg,R.
dc.date.accessioned2024-10-15T19:42:46Z
dc.date.available2024-10-15T19:42:46Z
dc.date.issued2024
dc.departmentKadir Has Universityen_US
dc.department-tempJamil M., Kadir Has University Cibali, Kadir Has Cd, Cibali, Fatih, Istanbul, 34083, Turkey; Chukwu I.J., Kadir Has University Cibali, Kadir Has Cd, Cibali, Fatih, Istanbul, 34083, Turkey; Creutzburg R., SRH Berlin University of Applied Sciences, Berlin School of Technology, Ernst-Reuter-Platz 10, Berlin, D-10587, Germany, Technische Hochschule Brandenburg, Department of Informatics and Media, Magdeburger Str. 50, Brandenburg, D-14776, Germanyen_US
dc.descriptionThe Society of Photo-Optical Instrumentation Engineers (SPIE)en_US
dc.description.abstractThe global impact of the COVID-19 pandemic has significantly disrupted healthcare systems w orldwide. Amidst challenges, there is a crucial demand for efficient me thodologies to ex pedite di sease de tection. Th is research underscores the potential of Deep Neural Networks in enhancing pandemic management over the past five years. Focusing on Artificial Intelligence (AI) application in COVID-19 detection through X-ray imaging, this research advocates using Visual Geometry Group (VGG’16), a Convolutional Neural Network (CNN) used for image classification w ith m ultiple l ayers. T hese C NNs a ct a s c lassifier-based sy stems, tr eating im ages as structured data arrays to identify and learn patterns. Quantifying the model’s effectiveness t hrough t he a ccuracy s core, t his r esearch r eveals a 0 .90% accuracy, indicating the model’s accurate detection of COVID-19 cases in X-ray images. Additionally, the study highlights a significant a chievement w ith a l ess t han 1 0% f alse p ositive r ate, c rucial f or r eliable a nd p rompt COVID-19 diagnoses in the healthcare industry. In conclusion, this research presents an AI-driven approach, utilizing VGG’16 and convolutional neural networks to enhance the efficiency an d ac curacy of CO VID-19 de tection in X-ray imaging. The high accuracy score and low false positive rate positions this methodology as a valuable contribution, offering robust pandemic management and healthcare decision-making. © 2024 SPIEen_US
dc.description.sponsorshipEuropean Commission, EC; Erasmus+, (101082683); Erasmus+en_US
dc.identifier.citation0
dc.identifier.doi10.1117/12.3028812
dc.identifier.isbn978-151067384-7
dc.identifier.issn0277-786X
dc.identifier.scopus2-s2.0-85197702213
dc.identifier.scopusqualityQ4
dc.identifier.urihttps://doi.org/10.1117/12.3028812
dc.identifier.urihttps://hdl.handle.net/20.500.12469/6589
dc.identifier.volume13033en_US
dc.language.isoenen_US
dc.publisherSPIEen_US
dc.relation.ispartofProceedings of SPIE - The International Society for Optical Engineering -- Multimodal Image Exploitation and Learning 2024 -- 22 April 2024 -- National Harbor -- 200640en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAIen_US
dc.subjectArtificial Intelligenceen_US
dc.subjectChest X-Ray Imagingen_US
dc.subjectCNNen_US
dc.subjectConvolutional Neural Networken_US
dc.subjectCOVID-19 Detectionen_US
dc.subjectDeep Neural Networken_US
dc.subjectVGG’16en_US
dc.subjectVisual Geometry Groupen_US
dc.titleImproving Covid-19 Detection: Leveraging Convolutional Neural Networks in Chest X-Ray Imagingen_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files