Adaptive Sampling Noise Mitigation Technique for Feedback-Based Quantum Algorithms

dc.authoridWisniewski, Rafal/0000-0001-6719-8427
dc.authorscopusid57209287337
dc.authorscopusid57219795805
dc.authorscopusid24824407000
dc.authorscopusid23394098500
dc.contributor.authorRahman, Salahuddin Abdul
dc.contributor.authorClausen, Henrik Glavind
dc.contributor.authorKarabacak, Ozkan
dc.contributor.authorWisniewski, Rafal
dc.date.accessioned2024-10-15T19:38:58Z
dc.date.available2024-10-15T19:38:58Z
dc.date.issued2024
dc.departmentKadir Has Universityen_US
dc.department-temp[Rahman, Salahuddin Abdul; Clausen, Henrik Glavind; Wisniewski, Rafal] Aalborg Univ, Dept Elect Syst, Automat & Control Sect, Aalborg, Denmark; [Karabacak, Ozkan] Kadir Has Univ, Dept Mechatron Engn, Istanbul, Turkiyeen_US
dc.descriptionWisniewski, Rafal/0000-0001-6719-8427en_US
dc.description.abstractInspired by Lyapunov control techniques for quantum systems, feedback-based quantum algorithms have recently been proposed as alternatives to variational quantum algorithms for solving quadratic unconstrained binary optimization problems. These algorithms update the circuit parameters layer-wise through feedback from measuring the qubits in the previous layer to estimate expectations of certain observables. Therefore, the number of samples directly affects the algorithm's performance and may even cause divergence. In this work, we propose an adaptive technique to mitigate the sampling noise by adopting a switching control law in the design of the feedback-based algorithm. The proposed technique can lead to better performance and convergence properties. We show the robustness of our technique against sampling noise through an application for the maximum clique problem.en_US
dc.description.woscitationindexConference Proceedings Citation Index - Science
dc.identifier.citation0
dc.identifier.doi10.1007/978-3-031-63778-0_23
dc.identifier.endpage329en_US
dc.identifier.isbn9783031637773
dc.identifier.isbn9783031637780
dc.identifier.issn0302-9743
dc.identifier.issn1611-3349
dc.identifier.scopus2-s2.0-85200221752
dc.identifier.scopusqualityQ3
dc.identifier.startpage321en_US
dc.identifier.urihttps://doi.org/10.1007/978-3-031-63778-0_23
dc.identifier.urihttps://hdl.handle.net/20.500.12469/6299
dc.identifier.volume14937en_US
dc.identifier.wosWOS:001279328700023
dc.identifier.wosqualityN/A
dc.institutionauthorKarabacak, Özkan
dc.language.isoenen_US
dc.publisherSpringer international Publishing Agen_US
dc.relation.ispartof24th International Conference on Computational Science (ICCS) -- JUL 02-04, 2024 -- Univ Malaga, Malaga, SPAINen_US
dc.relation.ispartofseriesLecture Notes in Computer Science
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFALQONen_US
dc.subjectQLCen_US
dc.subjectSampling Noise Mitigationen_US
dc.titleAdaptive Sampling Noise Mitigation Technique for Feedback-Based Quantum Algorithmsen_US
dc.typeConference Objecten_US
dspace.entity.typePublication
relation.isAuthorOfPublicationa7f221bd-0e6f-4846-a7cc-18833a9ab0f8
relation.isAuthorOfPublication.latestForDiscoverya7f221bd-0e6f-4846-a7cc-18833a9ab0f8

Files