Adaptive Sampling Noise Mitigation Technique for Feedback-Based Quantum Algorithms

dc.authorid Wisniewski, Rafal/0000-0001-6719-8427
dc.authorscopusid 57209287337
dc.authorscopusid 57219795805
dc.authorscopusid 24824407000
dc.authorscopusid 23394098500
dc.contributor.author Karabacak, Özkan
dc.contributor.author Clausen, Henrik Glavind
dc.contributor.author Karabacak, Ozkan
dc.contributor.author Wisniewski, Rafal
dc.contributor.other Mechatronics Engineering
dc.date.accessioned 2024-10-15T19:38:58Z
dc.date.available 2024-10-15T19:38:58Z
dc.date.issued 2024
dc.department Kadir Has University en_US
dc.department-temp [Rahman, Salahuddin Abdul; Clausen, Henrik Glavind; Wisniewski, Rafal] Aalborg Univ, Dept Elect Syst, Automat & Control Sect, Aalborg, Denmark; [Karabacak, Ozkan] Kadir Has Univ, Dept Mechatron Engn, Istanbul, Turkiye en_US
dc.description Wisniewski, Rafal/0000-0001-6719-8427 en_US
dc.description.abstract Inspired by Lyapunov control techniques for quantum systems, feedback-based quantum algorithms have recently been proposed as alternatives to variational quantum algorithms for solving quadratic unconstrained binary optimization problems. These algorithms update the circuit parameters layer-wise through feedback from measuring the qubits in the previous layer to estimate expectations of certain observables. Therefore, the number of samples directly affects the algorithm's performance and may even cause divergence. In this work, we propose an adaptive technique to mitigate the sampling noise by adopting a switching control law in the design of the feedback-based algorithm. The proposed technique can lead to better performance and convergence properties. We show the robustness of our technique against sampling noise through an application for the maximum clique problem. en_US
dc.description.woscitationindex Conference Proceedings Citation Index - Science
dc.identifier.citationcount 0
dc.identifier.doi 10.1007/978-3-031-63778-0_23
dc.identifier.endpage 329 en_US
dc.identifier.isbn 9783031637773
dc.identifier.isbn 9783031637780
dc.identifier.issn 0302-9743
dc.identifier.issn 1611-3349
dc.identifier.scopus 2-s2.0-85200221752
dc.identifier.scopusquality Q3
dc.identifier.startpage 321 en_US
dc.identifier.uri https://doi.org/10.1007/978-3-031-63778-0_23
dc.identifier.uri https://hdl.handle.net/20.500.12469/6299
dc.identifier.volume 14937 en_US
dc.identifier.wos WOS:001279328700023
dc.identifier.wosquality N/A
dc.language.iso en en_US
dc.publisher Springer international Publishing Ag en_US
dc.relation.ispartof 24th International Conference on Computational Science (ICCS) -- JUL 02-04, 2024 -- Univ Malaga, Malaga, SPAIN en_US
dc.relation.ispartofseries Lecture Notes in Computer Science
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 1
dc.subject FALQON en_US
dc.subject QLC en_US
dc.subject Sampling Noise Mitigation en_US
dc.title Adaptive Sampling Noise Mitigation Technique for Feedback-Based Quantum Algorithms en_US
dc.type Conference Object en_US
dc.wos.citedbyCount 0
dspace.entity.type Publication
relation.isAuthorOfPublication a7f221bd-0e6f-4846-a7cc-18833a9ab0f8
relation.isAuthorOfPublication.latestForDiscovery a7f221bd-0e6f-4846-a7cc-18833a9ab0f8
relation.isOrgUnitOfPublication 01f3d407-6823-4ad3-8298-0b6a2a6e5cff
relation.isOrgUnitOfPublication.latestForDiscovery 01f3d407-6823-4ad3-8298-0b6a2a6e5cff

Files