Thyroid and Breast Cancer Disease Diagnosis Using Fuzzy-Neural Networks

dc.contributor.author Canan, Senol
dc.contributor.author Yıldırım, Tülay
dc.date.accessioned 2019-06-28T11:11:28Z
dc.date.available 2019-06-28T11:11:28Z
dc.date.issued 2009
dc.description.abstract In this paper a new hybrid structure in which Neural Network and Fuzzy Logic are combined is proposed and its algorithm is developed. Fuzzy-CSFNN Fuzzy-MLP and Fuzzy-RBF structures are constituted and their performances are compared. Conic Section Function Neural Network (CSFNN) unifies the propagation rules of the Multilayer Perceptron (MLP) and the Radial Basis Function (RBF) networks at a unique network by its distinctive propagation rules. That means CSFNNs accommodate MLPs and RBFs in its own self-network structure. The proposed approach is implemented in a well-known benchmark medical problem with real clinical data for thyroid and breast cancer disease diagnosis. Simulation results show that proposed hybrid structures outperform both MATLAB-ANFIS and non-hybrid structures. en_US]
dc.identifier.doi 10.1109/ELECO.2009.5355297 en_US
dc.identifier.isbn 9789944898188
dc.identifier.scopus 2-s2.0-76249102414 en_US
dc.identifier.uri https://hdl.handle.net/20.500.12469/1592
dc.identifier.uri https://doi.org/10.1109/ELECO.2009.5355297
dc.language.iso en en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.title Thyroid and Breast Cancer Disease Diagnosis Using Fuzzy-Neural Networks en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.institutional Canan, Senol en_US
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::conference output
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü en_US
gdc.description.endpage II393
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.startpage II390 en_US
gdc.identifier.openalex W1605828120
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.5942106E-9
gdc.oaire.isgreen true
gdc.oaire.keywords N/A
gdc.oaire.popularity 4.5663937E-10
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.fwci 0.219
gdc.openalex.normalizedpercentile 0.73
gdc.opencitations.count 0
gdc.relation.journal International Conference on Electrical and Electronics Engineering - ELECO 2009
gdc.scopus.citedcount 10
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery b20623fc-1264-4244-9847-a4729ca7508c

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Thyroid and breast cancer disease diagnosis using fuzzy-neural networks.pdf
Size:
169.73 KB
Format:
Adobe Portable Document Format
Description: