Indoor Positioning Using Federated Kalman Filter

dc.authorscopusid 57202982817
dc.authorscopusid 6603417688
dc.contributor.author Ayabakan, T.
dc.contributor.author Kerestecioğlu, Feza
dc.contributor.author Kerestecioglu, F.
dc.contributor.other Computer Engineering
dc.date.accessioned 2023-10-19T15:05:34Z
dc.date.available 2023-10-19T15:05:34Z
dc.date.issued 2018
dc.department-temp Ayabakan, T., Savaş Sistemleri Başmuhendisli?i, Istanbul Tersanesi Komutanli?i, Istanbul, Turkey; Kerestecioglu, F., Bilgisayar Muhendisli?i Bolumu, Kadir Has Universitesi, Istanbul, Turkey en_US
dc.description Aselsan;et al.;Huawei;IEEE Signal Processing Society;IEEE Turkey Section;Netas en_US
dc.description 26th IEEE Signal Processing and Communications Applications Conference, SIU 2018 --2 May 2018 through 5 May 2018 -- --137780 en_US
dc.description.abstract In this paper, one of the multi sensor fusion techniques, namely Federated Kalman Filter (FKF) performance is studied for Indoor Positioning problem. Kalman Filters having centralized and decentralized structures are widely used for outdoor positioning and navigation applications. Besides them, indoor positioning received large interest in recent years. In this study, decentralized FKF is applied in indoor positioning problem by taking its outdoor navigation performance into consideration. Simulations are done using distance measurements assumed to be priorly calculated. Results gathered via simulations are evaluated to be promising for future studies. © 2018 IEEE. en_US
dc.identifier.citationcount 5
dc.identifier.doi 10.1109/SIU.2018.8404427 en_US
dc.identifier.endpage 4 en_US
dc.identifier.isbn 9781538615010
dc.identifier.scopus 2-s2.0-85050829397 en_US
dc.identifier.startpage 1 en_US
dc.identifier.uri https://doi.org/10.1109/SIU.2018.8404427
dc.identifier.uri https://hdl.handle.net/20.500.12469/4950
dc.khas 20231019-Scopus en_US
dc.language.iso tr en_US
dc.publisher Institute of Electrical and Electronics Engineers Inc. en_US
dc.relation.ispartof 26th IEEE Signal Processing and Communications Applications Conference, SIU 2018 en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 5
dc.subject Data fusion en_US
dc.subject Federated kalman filter en_US
dc.subject Indoor positioning en_US
dc.subject Data fusion en_US
dc.subject Indoor positioning systems en_US
dc.subject Decentralized structures en_US
dc.subject Federated Kalman filters en_US
dc.subject Indoor positioning en_US
dc.subject Multi-sensor fusion techniques en_US
dc.subject Outdoor navigation en_US
dc.subject Outdoor positioning en_US
dc.subject Kalman filters en_US
dc.title Indoor Positioning Using Federated Kalman Filter en_US
dc.title.alternative Federe Kalman Süzgeci ile Iç Mekanda Konum Belirleme en_US
dc.type Conference Object en_US
dspace.entity.type Publication
relation.isAuthorOfPublication 3b717ed5-ce95-4f19-b9d0-f544789c28da
relation.isAuthorOfPublication.latestForDiscovery 3b717ed5-ce95-4f19-b9d0-f544789c28da
relation.isOrgUnitOfPublication fd8e65fe-c3b3-4435-9682-6cccb638779c
relation.isOrgUnitOfPublication.latestForDiscovery fd8e65fe-c3b3-4435-9682-6cccb638779c

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
4950.pdf
Size:
268.71 KB
Format:
Adobe Portable Document Format
Description:
Tam Metin / Full Text