Rssi-Based Hybrid Algorithm for Real-Time Pedestrian Tracking in Indoor Environments by Using Rfid Technology

dc.contributor.advisor Çavur, Mehmet en_US
dc.contributor.author Demir, Ebubekir
dc.contributor.other Management Information Systems
dc.contributor.other 03. Faculty of Economics, Administrative and Social Sciences
dc.contributor.other 01. Kadir Has University
dc.date.accessioned 2020-02-17T19:12:41Z
dc.date.available 2020-02-17T19:12:41Z
dc.date.issued 2019
dc.description.abstract The usage and importance of Location Based Services for indoor environments are increasing recently. The knowledge of the exact and real-time location is required by many of these services. Since Global Positioning System (GPS) is not designed for indoor environment, new positioning systems based on new technologies and methods are needed for these type of environments. In this thesis, RFID-based real-time indoor positioning systems and algorithm are developed. Received Signal Strength (RSS) based positioning techniques, are studied in detail. A hybrid algorithm is developed which depends on the mainly fingerprinting. The advantages of each method are emphasized. An original and unique hybrid algorithm is developed in this study in order to overcome available algorithm's' drawbacks. The algorithm and methodology is tested in two different indoor environments. As a result, the accuracy of this original and unique methodology and algorithm is 2,5 m. en_US
dc.description.abstract Kapalı ortamlarda lokasyon bazlı hizmetlerin kullanımı ve önemi her geçen gün artmaktadır. Bu servisler için tam ve gerçek zamanlı konum bilgisi gerekmektedir. Ulusal Konumlandırma Sistemi (GPS) kapalı ortamlar için tasarlanmadığından bu tip ortamlar için yeni teknolojiler ve yeni metotlar kullanan yeni konumlandırma sistemlerine ihtiyaç duyulmaktadır. Bu tez çalışmasında, RFID tabanlı gerçek zamanlı iç mekan konumlandırma sistemleri ve algoritmaları geliştirilmiştir. Alınan Sinyal Gücü (RSS) tabanlı konumlandırma teknikleri, detaylı olarak incelenmiştir. Başlıca sinyal haritasına dayanan bir hibrid algoritma geliştirilmiştir. Her yöntemin avantajları vurgulanmıştır. Mevcut algoritmaların yetersizliklerine çözüm olacak orijinal ve özgün bir hibrit algoritma geliştirilmiştir. Geliştirilen algoritma ve yöntem 2 farklı kapalı alanda test edilmiştir. Bu orijinal ve özgün metodoloji ve algoritmanın doğruluğu 2,5 m'dir. en_US
dc.identifier.uri https://hdl.handle.net/20.500.12469/2772
dc.language.iso en en_US
dc.publisher Kadir Has Üniversitesi en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject RFID technology en_US
dc.subject indoor positioning en_US
dc.subject Received Signal Strength en_US
dc.subject fingerprinting en_US
dc.subject WKNN en_US
dc.subject RFID teknolojisi en_US
dc.subject kapalı alan konumlandırma sistemi en_US
dc.subject Alınan Sinyal Gücü en_US
dc.subject parmak izi yöntemi en_US
dc.subject WKNN en_US
dc.title Rssi-Based Hybrid Algorithm for Real-Time Pedestrian Tracking in Indoor Environments by Using Rfid Technology en_US
dc.type Master Thesis en_US
dspace.entity.type Publication
gdc.author.institutional Çavur, Mahmut
gdc.coar.access open access
gdc.coar.type text::thesis::master thesis
gdc.description.department Enstitüler, Lisansüstü Eğitim Enstitüsü, İşletme Ana Bilim Dalı en_US
gdc.description.departmenttemp Kadir Has University : Graduate School of Science and Engineering: Management information Systems en_US
gdc.description.publicationcategory Tez en_US
gdc.identifier.yoktezid 583048 en_US
relation.isAuthorOfPublication 463fefd7-0e68-4479-ad37-0ea65fa6ae01
relation.isAuthorOfPublication.latestForDiscovery 463fefd7-0e68-4479-ad37-0ea65fa6ae01
relation.isOrgUnitOfPublication ff62e329-217b-4857-88f0-1dae00646b8c
relation.isOrgUnitOfPublication acb86067-a99a-4664-b6e9-16ad10183800
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery ff62e329-217b-4857-88f0-1dae00646b8c

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections