Support vector regression for surveillance purposes

dc.contributor.authorÖzer, Sedat
dc.contributor.authorÇırpan, Hakan Ali
dc.contributor.authorKabaoğlu, Nihat
dc.date.accessioned2019-06-27T08:00:50Z
dc.date.available2019-06-27T08:00:50Z
dc.date.issued2006
dc.departmentFakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümüen_US
dc.departmentYüksekokullar, Teknik Bilimler Meslek Yüksekokuluen_US
dc.description.abstractThis paper addresses the problem of applying powerful statistical pattern classification algorithm based on kernel functions to target tracking on surveillance systems. Rather than directly adapting a recognizer we develop a localizer directly using the regression form of the Support Vector Machines (SVM). The proposed approach considers to use dynamic model together as feature vectors and makes the byperplane and the support vectors follow the changes in these features. The performance of the tracker is demonstrated in a sensor network scenario with a constant velocity moving target on a plane for surveillance purpose.en_US]
dc.identifier.citation1
dc.identifier.endpage449
dc.identifier.isbn3-540-39392-7
dc.identifier.issn0302-9743en_US
dc.identifier.issn0302-9743
dc.identifier.scopus2-s2.0-33751018561en_US
dc.identifier.scopusqualityQ2
dc.identifier.startpage442en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12469/112
dc.identifier.volume4105en_US
dc.identifier.wosWOS:000241429800057en_US
dc.identifier.wosqualityN/A
dc.institutionauthorÖzer, Sedaten_US
dc.institutionauthorÇırpan, Hakan Alien_US
dc.institutionauthorKabaoğlu, Nihaten_US
dc.language.isoenen_US
dc.publisherSpringer-Verlag Berlinen_US
dc.relation.journalMultimedia Content Representation, Classification And Securityen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.titleSupport vector regression for surveillance purposesen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files