Support vector regression for surveillance purposes

gdc.relation.journal Multimedia Content Representation, Classification And Security en_US
dc.contributor.author Özer, Sedat
dc.contributor.author Çırpan, Hakan Ali
dc.contributor.author Kabaoğlu, Nihat
dc.contributor.other 01. Kadir Has University
dc.date.accessioned 2019-06-27T08:00:50Z
dc.date.available 2019-06-27T08:00:50Z
dc.date.issued 2006
dc.description.abstract This paper addresses the problem of applying powerful statistical pattern classification algorithm based on kernel functions to target tracking on surveillance systems. Rather than directly adapting a recognizer we develop a localizer directly using the regression form of the Support Vector Machines (SVM). The proposed approach considers to use dynamic model together as feature vectors and makes the byperplane and the support vectors follow the changes in these features. The performance of the tracker is demonstrated in a sensor network scenario with a constant velocity moving target on a plane for surveillance purpose. en_US]
dc.identifier.citationcount 1
dc.identifier.isbn 3-540-39392-7
dc.identifier.issn 0302-9743 en_US
dc.identifier.issn 0302-9743
dc.identifier.scopus 2-s2.0-33751018561 en_US
dc.identifier.uri https://hdl.handle.net/20.500.12469/112
dc.language.iso en en_US
dc.publisher Springer-Verlag Berlin en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.title Support vector regression for surveillance purposes en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Özer, Sedat en_US
gdc.author.institutional Çırpan, Hakan Ali en_US
gdc.author.institutional Kabaoğlu, Nihat en_US
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü en_US
gdc.description.department Yüksekokullar, Teknik Bilimler Meslek Yüksekokulu en_US
gdc.description.endpage 449
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 442 en_US
gdc.description.volume 4105 en_US
gdc.identifier.wos WOS:000241429800057 en_US
gdc.scopus.citedcount 1
gdc.wos.citedcount 1
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery b20623fc-1264-4244-9847-a4729ca7508c

Files