Joint Channel Estimation and Symbol Detection for OFDM Systems in Rapidly Time-Varying Sparse Multipath Channels
Loading...
Date
2015
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Springer
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
In this paper we propose a space-alternating generalized expectation maximization (SAGE) based joint channel estimation and data detection algorithm in compressive sensing (CS) framework for orthogonal frequency-division multiplexing (OFDM) systems in rapidly time-varying sparse multipath channels. Using dynamic parametric channel model the sparse multipath channel is parameterized by a small number of distinct paths each represented by the path delays and path gains. In our model we assume that the path gains rapidly vary within the OFDM symbol duration while the number of paths and path delays vary symbol by symbol. Since the convergency of the SAGE algorithm needs statistically independent parameter set of interest to be estimated we specifically choose the discrete orthonormal Karhunen-Loeve basis expansion model (DKL-BEM) to provide statistically independent BEM coefficients within one OFDM symbol duration and use just a few significant BEM coefficients to represent the rapidly time-varying path gains. The resulting SAGE algorithm that also incorporates inter-channel interference cancellation updates the data sequences and the channel parameters serially. The computer simulations show that our proposed algorithm has better channel estimation and symbol error rate performance than that of the orthogonal matching pursuit algorithm that is commonly proposed in the CS literature.
Description
Keywords
Sparse multipath channel, OFDM, Sage, Matching pursuit, Basis expansion
Turkish CoHE Thesis Center URL
Fields of Science
Citation
14
WoS Q
N/A
Scopus Q
Q2
Source
Volume
82
Issue
3
Start Page
1161
End Page
1178