A Cloud Service Composition Method Using a Fuzzy-Based Particle Swarm Optimization Algorithm

dc.authorid Al-Khafaji, Hamza Mohammed Ridha/0000-0003-3620-581X
dc.authorid Unal, Mehmet/0000-0003-1243-153X
dc.authorscopusid 34973317500
dc.authorscopusid 57370210100
dc.authorscopusid 57205482293
dc.authorscopusid 55897274300
dc.authorscopusid 57254381700
dc.authorwosid Al-Khafaji, Hamza Mohammed Ridha/D-6335-2019
dc.authorwosid Unal, Mehmet/W-2804-2018
dc.contributor.author Nazif, Habibeh
dc.contributor.author Jafari Navimipour, Nima
dc.contributor.author Nassr, Mohammad
dc.contributor.author Al-Khafaji, Hamza Mohammed Ridha
dc.contributor.author Navimipour, Nima Jafari
dc.contributor.author Unal, Mehmet
dc.contributor.other Computer Engineering
dc.date.accessioned 2024-06-23T21:36:57Z
dc.date.available 2024-06-23T21:36:57Z
dc.date.issued 2023
dc.department Kadir Has University en_US
dc.department-temp [Nazif, Habibeh] Payame Noor Univ, Dept Math, Tehran, Iran; [Nassr, Mohammad] Tartous Univ, Commun Technol Engn Dept, Tartus, Syria; [Nassr, Mohammad] Gulf Univ Sci & Technol, Dept Math & Nat Sci, Mishref Campus, Mubarak Al Abdullah, Kuwait; [Al-Khafaji, Hamza Mohammed Ridha] Al Mustaqbal Univ, Coll Engn & Technol, Biomed Engn Dept, Hillah 51001, Babil, Iraq; [Navimipour, Nima Jafari] Kadir Has Univ, Fac Engn & Nat Sci, Dept Comp Engn, Istanbul, Turkiye; [Navimipour, Nima Jafari] Natl Yunlin Univ Sci & Technol, Future Technol Res Ctr, Touliu 64002, Taiwan; [Unal, Mehmet] Nisantasi Univ, Dept Comp Engn, Istanbul, Turkiye en_US
dc.description Al-Khafaji, Hamza Mohammed Ridha/0000-0003-3620-581X; Unal, Mehmet/0000-0003-1243-153X en_US
dc.description.abstract In today's dynamic business landscape, organizations heavily rely on cloud computing to leverage the power of virtualization and resource sharing. Service composition plays a vital role in cloud computing, combining multiple cloud services to fulfill complex user requests. Service composition in cloud computing presents several challenges. These include service heterogeneity, dynamic service availability, QoS (Quality of Service) constraints, and scalability issues. Traditional approaches often struggle to handle these challenges efficiently, leading to suboptimal resource utilization and poor service performance. This work presents a fuzzy-based strategy for composing cloud services to overcome these obstacles. The fact that service composition is NP-hard has prompted the use of a range of metaheuristic algorithms in numerous papers. Therefore, Particle Swarm Optimization (PSO) has been applied in this paper to solve the problem. Implementing a fuzzy-based PSO for service composition requires defining the fuzzy membership functions and rules based on the specific service domain. Once the fuzzy logic components are established, they can be integrated into the PSO algorithm. The simulation results have shown the high efficiency of the proposed method in decreasing the latency, cost, and response time. en_US
dc.identifier.citationcount 1
dc.identifier.doi 10.1007/s11042-023-17719-2
dc.identifier.issn 1380-7501
dc.identifier.issn 1573-7721
dc.identifier.scopus 2-s2.0-85179336452
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.1007/s11042-023-17719-2
dc.identifier.uri https://hdl.handle.net/20.500.12469/5675
dc.identifier.wos WOS:001122190800008
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 2
dc.subject Service composition en_US
dc.subject Cloud computing en_US
dc.subject Particle swarm optimization en_US
dc.subject Fuzzy en_US
dc.title A Cloud Service Composition Method Using a Fuzzy-Based Particle Swarm Optimization Algorithm en_US
dc.type Article en_US
dc.wos.citedbyCount 3
dspace.entity.type Publication
relation.isAuthorOfPublication 0fb3c7a0-c005-4e5f-a9ae-bb163df2df8e
relation.isAuthorOfPublication.latestForDiscovery 0fb3c7a0-c005-4e5f-a9ae-bb163df2df8e
relation.isOrgUnitOfPublication fd8e65fe-c3b3-4435-9682-6cccb638779c
relation.isOrgUnitOfPublication.latestForDiscovery fd8e65fe-c3b3-4435-9682-6cccb638779c

Files