Assessing the impact of minor modifications on the interior structure of GRU: GRU1 and GRU2

dc.authoridYiğit, Gülsüm/0000-0001-7010-169X
dc.authoridAmasyali, Fatih/0000-0002-0404-5973
dc.authorwosidYiğit, Gülsüm/IVU-8380-2023
dc.authorwosidAmasyali, Fatih/AAZ-4791-2020
dc.contributor.authorYiğit, Gülsüm
dc.contributor.authorAmasyali, Mehmet Fatih
dc.date.accessioned2023-10-19T15:13:04Z
dc.date.available2023-10-19T15:13:04Z
dc.date.issued2022
dc.department-temp[Yigit, Gulsum] Kadir Has Univ, Fac Engn & Nat Sci, Comp Engn Dept, Istanbul, Turkey; [Yigit, Gulsum; Amasyali, Mehmet Fatih] Yildiz Tech Univ, Fac Elect & Elect, Dept Comp Engn, Istanbul, Turkeyen_US
dc.description.abstractIn this study, two GRU variants named GRU1 and GRU2 are proposed by employing simple changes to the internal structure of the standard GRU, which is one of the popular RNN variants. Comparative experiments are conducted on four problems: language modeling, question answering, addition task, and sentiment analysis. Moreover, in the addition task, curriculum learning and anti-curriculum learning strategies, which extend the training data having examples from easy to hard or from hard to easy, are comparatively evaluated. Accordingly, the GRU1 and GRU2 variants outperformed the standard GRU. In addition, the curriculum learning approach, in which the training data is expanded from easy to difficult, improves the performance considerably.en_US
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TUBTAK) [120E100]; TUBTAK - BDEB 2211/A national fellowship programen_US
dc.description.sponsorshipThis research is supported by The Scientific and Technological Research Council of Turkey (TuBTAK) in part of the project with 120E100 Grant number. G. Yigit is supported by TUBTAK - BDEB 2211/A national fellowship program for Ph.D. studies.en_US
dc.identifier.citation3
dc.identifier.doi10.1002/cpe.6775en_US
dc.identifier.issn1532-0626
dc.identifier.issn1532-0634
dc.identifier.issue20en_US
dc.identifier.scopus2-s2.0-85121038213en_US
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1002/cpe.6775
dc.identifier.urihttps://hdl.handle.net/20.500.12469/5598
dc.identifier.volume34en_US
dc.identifier.wosWOS:000729630100001en_US
dc.identifier.wosqualityN/A
dc.khas20231019-WoSen_US
dc.language.isoenen_US
dc.publisherWileyen_US
dc.relation.ispartofConcurrency and Computation-Practice & Experienceen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectcurriculum learningen_US
dc.subjectgated recurrent unitsen_US
dc.subjectrecurrent neural networksen_US
dc.subjectSeq2seqen_US
dc.subjectshort-term dependencyen_US
dc.titleAssessing the impact of minor modifications on the interior structure of GRU: GRU1 and GRU2en_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication363c092e-cd4b-400e-8261-ca5b99b1bea9
relation.isAuthorOfPublication.latestForDiscovery363c092e-cd4b-400e-8261-ca5b99b1bea9

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
5598.pdf
Size:
1.23 MB
Format:
Adobe Portable Document Format
Description:
Tam Metin / Full Text