Data-Driven Modeling of Traffic Flow in Macroscopic Network Systems

dc.contributor.author Firat, Toprak
dc.contributor.author Eroglu, Deniz
dc.contributor.other Molecular Biology and Genetics
dc.contributor.other 05. Faculty of Engineering and Natural Sciences
dc.contributor.other 01. Kadir Has University
dc.date.accessioned 2025-10-15T16:30:29Z
dc.date.available 2025-10-15T16:30:29Z
dc.date.issued 2025
dc.description.abstract Urban traffic modeling is essential for understanding and mitigating congestion, yet existing approaches face a trade-off between realism and scalability. Microscopic agent-based simulators capture individual vehicle behavior but are computationally intensive and hard to calibrate at scale. Macroscopic models, while more efficient, often rely on strong assumptions, such as fixed origin-destination flows, or oversimplify network dynamics. In this work, we propose a data-driven macroscopic model that simulates traffic as a discrete-time load-exchange process over flow networks. The model captures key phenomena such as bottlenecks, spillbacks, and adaptive load redistribution using only road-type attributes, network structure, and observed traffic density. Parameter learning is performed via evolutionary optimization, allowing the model to adapt to both synthetic and real-world conditions without assuming latent travel demand. We evaluate the framework on synthetic grid-like networks and on real traffic data from London, Istanbul, and New York. The resulting framework provides a scalable and interpretable alternative for urban traffic forecasting, balancing predictive accuracy with computational efficiency across diverse network conditions. en_US
dc.description.sponsorship TUEBITAK [121F329]; BAGEP Award of the Science Academy, Turkey en_US
dc.description.sponsorship The authors thank Fatihcan M. Atay for his valuable comments and insightful suggestions on the research. T.F. and D.E. acknowledge funding from TUBITAK (Grant No. 121F329). D.E. acknowledges support from the BAGEP Award of the Science Academy, Turkey. en_US
dc.identifier.doi 10.1063/5.0285930
dc.identifier.issn 1054-1500
dc.identifier.issn 1089-7682
dc.identifier.scopus 2-s2.0-105016051722
dc.identifier.uri https://doi.org/10.1063/5.0285930
dc.identifier.uri https://hdl.handle.net/20.500.12469/7519
dc.language.iso en en_US
dc.publisher AIP Publishing en_US
dc.relation.ispartof Chaos en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.title Data-Driven Modeling of Traffic Flow in Macroscopic Network Systems en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Eroğlu, Deniz
gdc.author.scopusid 60100213300
gdc.author.scopusid 37006533200
gdc.author.wosid Eroglu, Deniz/Gvs-9233-2022
gdc.description.department Kadir Has University en_US
gdc.description.departmenttemp [Firat, Toprak; Eroglu, Deniz] Kadir Has Univ, Fac Engn & Nat Sci, TR-34083 Istanbul, Turkiye; [Eroglu, Deniz] Imperial Coll London, Dept Math, London SW7 2AZ, England en_US
gdc.description.issue 9 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.volume 35 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W4414239752
gdc.identifier.pmid 40956603
gdc.identifier.wos WOS:001573469100002
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.0
gdc.opencitations.count 0
gdc.plumx.newscount 4
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0
gdc.wos.citedcount 0
relation.isAuthorOfPublication 5bae555f-a8aa-4b95-bcfe-54cc47812e13
relation.isAuthorOfPublication.latestForDiscovery 5bae555f-a8aa-4b95-bcfe-54cc47812e13
relation.isOrgUnitOfPublication 71ce8622-7449-4a6a-8fad-44d881416546
relation.isOrgUnitOfPublication 2457b9b3-3a3f-4c17-8674-7f874f030d96
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery 71ce8622-7449-4a6a-8fad-44d881416546

Files