Unconditional Maximum Likelihood Approach for Localization of Near-Field Sources in 3-D Space

dc.contributor.author Kabaoğlu, Nihat
dc.contributor.author Çırpan, Hakan Ali
dc.contributor.author Paker, Selçuk
dc.date.accessioned 2019-06-27T08:00:56Z
dc.date.available 2019-06-27T08:00:56Z
dc.date.issued 2004
dc.department Yüksekokullar, Kadir Has Meslek Yüksekokulu en_US
dc.department Yüksekokullar, Teknik Bilimler Meslek Yüksekokulu en_US
dc.description.abstract Since maximum likelihood (ML) approaches have better resolution performance than the conventional localization methods in the presence of less number and highly correlated source signal samples and low signal to noise ratios we propose unconditional ML (UML) method for estimating azimuth elevation and range parameters of near-field sources in 3-D space in this paper Besides these superiorities stability asymptotic unbiasedness asymptotic minimum variance properties are motivated the application of ML approach. Despite these advantages ML estimator has computational complexity. Fortunately this problem can be tackled by the application of Expectation/Maximization (EM) iterative algorithm which converts the multidimensional search problem to one dimensional parallel search problems in order to prevent computational complexity. en_US]
dc.identifier.citationcount 9
dc.identifier.doi 10.1109/ISSPIT.2004.1433729 en_US
dc.identifier.endpage 237
dc.identifier.isbn 0-7803-8689-2
dc.identifier.scopus 2-s2.0-21544453326 en_US
dc.identifier.startpage 233 en_US
dc.identifier.uri https://hdl.handle.net/20.500.12469/168
dc.identifier.uri https://doi.org/10.1109/ISSPIT.2004.1433729
dc.identifier.wos WOS:000228482900056 en_US
dc.institutionauthor Kabaoğlu, Nihat en_US
dc.language.iso en en_US
dc.publisher IEEE en_US
dc.relation.journal Proceedings of the Fourth IEEE International Symposium on Signal Processing and Information Technology en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 9
dc.title Unconditional Maximum Likelihood Approach for Localization of Near-Field Sources in 3-D Space en_US
dc.type Conference Object en_US
dc.wos.citedbyCount 9
dspace.entity.type Publication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Unconditional maximum likelihood approach for localization of near-field sources in 3D space.pdf
Size:
685.38 KB
Format:
Adobe Portable Document Format
Description: