The Effect of Data Augmentation on Adhd Diagnostic Model Using Deep Learning

dc.authorscopusid 57211992616
dc.authorscopusid 55364715200
dc.authorscopusid 35617283100
dc.contributor.author Cicek, G.
dc.contributor.author Özmen, Atilla
dc.contributor.author Ozmen, A.
dc.contributor.author Akan, A.
dc.contributor.other Electrical-Electronics Engineering
dc.date.accessioned 2023-10-19T15:05:32Z
dc.date.available 2023-10-19T15:05:32Z
dc.date.issued 2019
dc.department-temp Cicek, G., IÜ-CerrahpaşaBeykent Üniversitesi, Biyomedikal Yazilim Muhendisli?i Bölümü, Istanbul, Turkey; Ozmen, A., Kadir Has Üniversitesi, Elektrik-Elektronik Mühendisli?i Bölümü, Istanbul, Turkey; Akan, A., Izmir Katip Çelebi Üniversitesi, Biyomedikal Mühendisli?i Bölümü, Izmir, Turkey en_US
dc.description 2019 Medical Technologies Congress, TIPTEKNO 2019 --3 October 2019 through 5 October 2019 -- --154293 en_US
dc.description.abstract Attention Deficit Hyperactivity Disorder (ADHD) is a neuro-behavioral hyperactivity disorder. It is frequently seen in childhood and youth, and lasts a lifetime unless treated. The ADHD classification model should be objective and robust. Correct diagnosis usually depends on the knowledge and experience of health professionals. In this respect, an automated method to be developed for the ADHD classification model is of great importance for clinicians. In this study, the effect of data augmentation on ADHD classification model with deep learning was investigated. For this purpose, magnetic resonance images were taken from NPIstanbul NeuroPsychiatry Hospital and ADHD-200 database. Since the images were not sufficient in terms of training, data augmentation methods were applied and by convolutional neural network (CNN) architecture, these data were classified and tried to reveal the diagnosis of the disease independently from the non-objective experiences of the health professionals. © 2019 IEEE. en_US
dc.identifier.citationcount 0
dc.identifier.doi 10.1109/TIPTEKNO.2019.8895056 en_US
dc.identifier.isbn 9781728124209
dc.identifier.scopus 2-s2.0-85075603587 en_US
dc.identifier.uri https://doi.org/10.1109/TIPTEKNO.2019.8895056
dc.identifier.uri https://hdl.handle.net/20.500.12469/4936
dc.khas 20231019-Scopus en_US
dc.language.iso en en_US
dc.publisher Institute of Electrical and Electronics Engineers Inc. en_US
dc.relation.ispartof TIPTEKNO 2019 - Tip Teknolojileri Kongresi en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 0
dc.subject Attention deficit hyperactivitiy disorder en_US
dc.subject Classification en_US
dc.subject Convolutional neural network en_US
dc.subject Online data augmentation en_US
dc.subject Biomedical engineering en_US
dc.subject Classification (of information) en_US
dc.subject Convolution en_US
dc.subject Diagnosis en_US
dc.subject Magnetic resonance en_US
dc.subject Magnetic resonance imaging en_US
dc.subject Neural networks en_US
dc.subject Attention deficit en_US
dc.subject Attention deficit hyperactivity disorder en_US
dc.subject Classification models en_US
dc.subject Convolutional neural network en_US
dc.subject Health professionals en_US
dc.subject Hyperactivity disorder en_US
dc.subject Knowledge and experience en_US
dc.subject Online data en_US
dc.subject Deep learning en_US
dc.title The Effect of Data Augmentation on Adhd Diagnostic Model Using Deep Learning en_US
dc.title.alternative Derin Ö?renmeyi Kullanarak Veri Artiriminin Dehb Tani Modeline Etkisi en_US
dc.type Conference Object en_US
dspace.entity.type Publication
relation.isAuthorOfPublication cf8f9e05-3f89-4ab6-af78-d0937210fb77
relation.isAuthorOfPublication.latestForDiscovery cf8f9e05-3f89-4ab6-af78-d0937210fb77
relation.isOrgUnitOfPublication 12b0068e-33e6-48db-b92a-a213070c3a8d
relation.isOrgUnitOfPublication.latestForDiscovery 12b0068e-33e6-48db-b92a-a213070c3a8d

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
4937.pdf
Size:
685.83 KB
Format:
Adobe Portable Document Format
Description:
Tam Metin / Full Text