Age Classification by Wgan Brain Mr Image Augmentation

dc.authorscopusid 59482048800
dc.authorscopusid 59481530500
dc.authorscopusid 57206483065
dc.authorscopusid 55364715200
dc.contributor.author Özmen, Atilla
dc.contributor.author Yilmaz, O.Z.
dc.contributor.author Darici, M.B.
dc.contributor.author Ozmen, A.
dc.contributor.other Electrical-Electronics Engineering
dc.date.accessioned 2025-01-15T21:38:19Z
dc.date.available 2025-01-15T21:38:19Z
dc.date.issued 2024
dc.department Kadir Has University en_US
dc.department-temp Yaman B., Dept. of Electrical-Electronics Eng., Kadir Has University, Istanbul, Turkey; Yilmaz O.Z., Dept. of Electrical-Electronics Eng., Kadir Has University, Istanbul, Turkey; Darici M.B., Dept. of Electrical-Electronics Eng., Kadir Has University, Istanbul, Turkey; Ozmen A., Dept. of Electrical-Electronics Eng., Istanbul Kultur University, Istanbul, Turkey en_US
dc.description.abstract Medical image augmentation plays a crucial role in enhancing the performance of Artificial Intelligence (AI) applications in medical sciences. Augmenting medical images is important for solving data scarcity, increasing data diversity, enhancing robustness and reliability of model and improving training and test results that can be done in medical sciences. In this work we show that Wasserstein Generative Adversarial Network with Gradient Penalty (WGAN-GP) can be used for increasing the performance of data classification. To achieve that, we have augmented healthy brain MR images by using WGAN and updated the dataset. The results give that when dataset augmented by WGAN-GP is used as input for CNN-based model to solve age classification problem, accuracy of this model increases to 98,37% from 95,14%. It can be concluded that the purposed WGAN-based brain MR image augmentation method enhances the performance of image classification. © 2024 IEEE. en_US
dc.identifier.citationcount 0
dc.identifier.doi 10.1109/TIPTEKNO63488.2024.10755233
dc.identifier.isbn 979-833152981-9
dc.identifier.scopus 2-s2.0-85212692469
dc.identifier.scopusquality N/A
dc.identifier.uri https://doi.org/10.1109/TIPTEKNO63488.2024.10755233
dc.identifier.uri https://hdl.handle.net/20.500.12469/7133
dc.identifier.wosquality N/A
dc.language.iso en en_US
dc.publisher Institute of Electrical and Electronics Engineers Inc. en_US
dc.relation.ispartof TIPTEKNO 2024 - Medical Technologies Congress, Proceedings -- 2024 Medical Technologies Congress, TIPTEKNO 2024 -- 10 October 2024 through 12 October 2024 -- Mugla -- 204315 en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 0
dc.subject Age Classification en_US
dc.subject Brain Mr en_US
dc.subject Data Augmentation en_US
dc.subject Wgan en_US
dc.title Age Classification by Wgan Brain Mr Image Augmentation en_US
dc.type Conference Object en_US
dspace.entity.type Publication
relation.isAuthorOfPublication cf8f9e05-3f89-4ab6-af78-d0937210fb77
relation.isAuthorOfPublication.latestForDiscovery cf8f9e05-3f89-4ab6-af78-d0937210fb77
relation.isOrgUnitOfPublication 12b0068e-33e6-48db-b92a-a213070c3a8d
relation.isOrgUnitOfPublication.latestForDiscovery 12b0068e-33e6-48db-b92a-a213070c3a8d

Files