Asymmetric phase diagrams, algebraically ordered Berezinskii-Kosterlitz-Thouless phase, and peninsular Potts flow structure in long-range spin glasses

dc.authoridGürleyen, Sabri Efe/0000-0003-3363-3202
dc.authorwosidGürleyen, Sabri Efe/ABF-5924-2022
dc.contributor.authorGurleyen, S. Efe
dc.contributor.authorBerker, A. Nihat
dc.date.accessioned2023-10-19T15:11:32Z
dc.date.available2023-10-19T15:11:32Z
dc.date.issued2022
dc.department-temp[Gurleyen, S. Efe] Istanbul Tech Univ, Dept Phys, TR-34469 Istanbul, Turkey; [Berker, A. Nihat] Kadir Has Univ, Fac Engn & Nat Sci, TR-34083 Istanbul, Turkey; [Berker, A. Nihat] MIT, Dept Phys, Cambridge, MA 02139 USAen_US
dc.description.abstractThe Ising spin-glass model on the three-dimensional (d = 3) hierarchical lattice with long-range ferromagnetic or spin-glass interactions is studied by the exact renormalization-group solution of the hierarchical lattice. The chaotic characteristics of the spin-glass phases are extracted in the form of our calculated, in this case continuously varying, Lyapunov exponents. Ferromagnetic long-range interactions break the usual symmetry of the spin-glass phase diagram. This phase-diagram symmetry breaking is dramatic, as it is underpinned by renormalization-group peninsular flows of the Potts multicritical type. A Berezinskii-Kosterlitz-Thouless (BKT) phase with algebraic order and a BKT-spin-glass phase transition with continuously varying critical exponents are seen. Similarly, for spin-glass long-range interactions, the Potts mechanism is also seen, by the mutual annihilation of stable and unstable fixed distributions causing the abrupt change of the phase diagram. On one side of this abrupt change, two distinct spin-glass phases, with finite (chaotic) and infinite (chaotic) coupling asymptotic behaviors are seen with a spin-glass to spin-glass phase transition.en_US
dc.description.sponsorshipAcademy of Sciences of Turkey (TUBA)en_US
dc.description.sponsorshipWe are grateful to E. Can Artun for useful conversations. Support by the Academy of Sciences of Turkey (TUBA) is gratefully acknowledged.en_US
dc.identifier.citation4
dc.identifier.doi10.1103/PhysRevE.105.024122en_US
dc.identifier.issn2470-0045
dc.identifier.issn2470-0053
dc.identifier.issue2en_US
dc.identifier.pmid35291165en_US
dc.identifier.scopus2-s2.0-85125246001en_US
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1103/PhysRevE.105.024122
dc.identifier.urihttps://hdl.handle.net/20.500.12469/5073
dc.identifier.volume105en_US
dc.identifier.wosWOS:000761163800002en_US
dc.identifier.wosqualityQ1
dc.khas20231019-WoSen_US
dc.language.isoenen_US
dc.publisherAmer Physical Socen_US
dc.relation.ispartofPhysical Review Een_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectLower Critical DimensionEn_Us
dc.subjectRenormalization-GroupEn_Us
dc.subjectHierarchical LatticesEn_Us
dc.subjectModelsEn_Us
dc.subjectSystemsEn_Us
dc.subjectTransitionsEn_Us
dc.subjectIncommensurateEn_Us
dc.subject1st-OrderEn_Us
dc.subjectLower Critical Dimension
dc.subjectRenormalization-Group
dc.subjectHierarchical Lattices
dc.subjectModels
dc.subjectSystems
dc.subjectTransitions
dc.subjectIncommensurate
dc.subject1st-Order
dc.titleAsymmetric phase diagrams, algebraically ordered Berezinskii-Kosterlitz-Thouless phase, and peninsular Potts flow structure in long-range spin glassesen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
5073.pdf
Size:
788.11 KB
Format:
Adobe Portable Document Format
Description:
Tam Metin / Full Text