Asymmetric phase diagrams, algebraically ordered Berezinskii-Kosterlitz-Thouless phase, and peninsular Potts flow structure in long-range spin glasses
dc.authorid | Gürleyen, Sabri Efe/0000-0003-3363-3202 | |
dc.authorwosid | Gürleyen, Sabri Efe/ABF-5924-2022 | |
dc.contributor.author | Gurleyen, S. Efe | |
dc.contributor.author | Berker, A. Nihat | |
dc.date.accessioned | 2023-10-19T15:11:32Z | |
dc.date.available | 2023-10-19T15:11:32Z | |
dc.date.issued | 2022 | |
dc.department-temp | [Gurleyen, S. Efe] Istanbul Tech Univ, Dept Phys, TR-34469 Istanbul, Turkey; [Berker, A. Nihat] Kadir Has Univ, Fac Engn & Nat Sci, TR-34083 Istanbul, Turkey; [Berker, A. Nihat] MIT, Dept Phys, Cambridge, MA 02139 USA | en_US |
dc.description.abstract | The Ising spin-glass model on the three-dimensional (d = 3) hierarchical lattice with long-range ferromagnetic or spin-glass interactions is studied by the exact renormalization-group solution of the hierarchical lattice. The chaotic characteristics of the spin-glass phases are extracted in the form of our calculated, in this case continuously varying, Lyapunov exponents. Ferromagnetic long-range interactions break the usual symmetry of the spin-glass phase diagram. This phase-diagram symmetry breaking is dramatic, as it is underpinned by renormalization-group peninsular flows of the Potts multicritical type. A Berezinskii-Kosterlitz-Thouless (BKT) phase with algebraic order and a BKT-spin-glass phase transition with continuously varying critical exponents are seen. Similarly, for spin-glass long-range interactions, the Potts mechanism is also seen, by the mutual annihilation of stable and unstable fixed distributions causing the abrupt change of the phase diagram. On one side of this abrupt change, two distinct spin-glass phases, with finite (chaotic) and infinite (chaotic) coupling asymptotic behaviors are seen with a spin-glass to spin-glass phase transition. | en_US |
dc.description.sponsorship | Academy of Sciences of Turkey (TUBA) | en_US |
dc.description.sponsorship | We are grateful to E. Can Artun for useful conversations. Support by the Academy of Sciences of Turkey (TUBA) is gratefully acknowledged. | en_US |
dc.identifier.citation | 4 | |
dc.identifier.doi | 10.1103/PhysRevE.105.024122 | en_US |
dc.identifier.issn | 2470-0045 | |
dc.identifier.issn | 2470-0053 | |
dc.identifier.issue | 2 | en_US |
dc.identifier.pmid | 35291165 | en_US |
dc.identifier.scopus | 2-s2.0-85125246001 | en_US |
dc.identifier.scopusquality | Q1 | |
dc.identifier.uri | https://doi.org/10.1103/PhysRevE.105.024122 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12469/5073 | |
dc.identifier.volume | 105 | en_US |
dc.identifier.wos | WOS:000761163800002 | en_US |
dc.identifier.wosquality | Q1 | |
dc.khas | 20231019-WoS | en_US |
dc.language.iso | en | en_US |
dc.publisher | Amer Physical Soc | en_US |
dc.relation.ispartof | Physical Review E | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Lower Critical Dimension | En_Us |
dc.subject | Renormalization-Group | En_Us |
dc.subject | Hierarchical Lattices | En_Us |
dc.subject | Models | En_Us |
dc.subject | Systems | En_Us |
dc.subject | Transitions | En_Us |
dc.subject | Incommensurate | En_Us |
dc.subject | 1st-Order | En_Us |
dc.subject | Lower Critical Dimension | |
dc.subject | Renormalization-Group | |
dc.subject | Hierarchical Lattices | |
dc.subject | Models | |
dc.subject | Systems | |
dc.subject | Transitions | |
dc.subject | Incommensurate | |
dc.subject | 1st-Order | |
dc.title | Asymmetric phase diagrams, algebraically ordered Berezinskii-Kosterlitz-Thouless phase, and peninsular Potts flow structure in long-range spin glasses | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 5073.pdf
- Size:
- 788.11 KB
- Format:
- Adobe Portable Document Format
- Description:
- Tam Metin / Full Text