Recurrence analysis of extreme event-like data

dc.contributor.author Eroğlu, Deniz
dc.contributor.author Goswami, Bedartha
dc.contributor.author Hirata, Yoshito
dc.contributor.author Eroğlu, Deniz
dc.contributor.author Merz, Bruno
dc.contributor.author Kurths, Juergen
dc.contributor.author Marwan, Norbert
dc.contributor.other Molecular Biology and Genetics
dc.date.accessioned 2021-05-23T13:25:19Z
dc.date.available 2021-05-23T13:25:19Z
dc.date.issued 2021
dc.description.abstract The identification of recurrences at various time-scales in extreme event-like time series is challenging because of the rare occurrence of events which are separated by large temporal gaps. Most of the existing time series analysis techniques cannot be used to analyze an extreme event-like time series in its unaltered form. The study of the system dynamics by reconstruction of the phase space using the standard delay embedding method is not directly applicable to event-like time series as it assumes a Euclidean notion of distance between states in the phase space. The edit distance method is a novel approach that uses the point-process nature of events. We propose a modification of edit distance to analyze the dynamics of extreme event-like time series by incorporating a nonlinear function which takes into account the sparse distribution of extreme events and utilizes the physical significance of their temporal pattern. We apply the modified edit distance method to event-like data generated from point process as well as flood event series constructed from discharge data of the Mississippi River in the USA and compute their recurrence plots. From the recurrence analysis, we are able to quantify the deterministic properties of extreme event-like data. We also show that there is a significant serial dependency in the flood time series by using the random shuffle surrogate method. en_US
dc.identifier.citationcount 13
dc.identifier.doi 10.5194/npg-28-213-2021 en_US
dc.identifier.endpage 229 en_US
dc.identifier.issn 1023-5809 en_US
dc.identifier.issn 1023-5809
dc.identifier.issue 2 en_US
dc.identifier.scopus 2-s2.0-85105505418 en_US
dc.identifier.scopusquality Q2
dc.identifier.startpage 213 en_US
dc.identifier.uri https://hdl.handle.net/20.500.12469/4024
dc.identifier.volume 28 en_US
dc.identifier.wos WOS:000648545500001 en_US
dc.identifier.wosquality Q3
dc.institutionauthor Eroğlu, Deniz en_US
dc.language.iso en en_US
dc.publisher COPERNICUS GESELLSCHAFT MBH en_US
dc.relation.journal NONLINEAR PROCESSES IN GEOPHYSICS en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 17
dc.subject SPATIAL POINT-PROCESSES en_US
dc.subject TIME-SERIES en_US
dc.subject LYAPUNOV EXPONENTS en_US
dc.subject PRECIPITATION en_US
dc.subject MODELS en_US
dc.title Recurrence analysis of extreme event-like data en_US
dc.type Article en_US
dc.wos.citedbyCount 15
dspace.entity.type Publication
relation.isAuthorOfPublication 5bae555f-a8aa-4b95-bcfe-54cc47812e13
relation.isAuthorOfPublication.latestForDiscovery 5bae555f-a8aa-4b95-bcfe-54cc47812e13
relation.isOrgUnitOfPublication 71ce8622-7449-4a6a-8fad-44d881416546
relation.isOrgUnitOfPublication.latestForDiscovery 71ce8622-7449-4a6a-8fad-44d881416546

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
npg-28-213-2021.pdf
Size:
6 MB
Format:
Adobe Portable Document Format
Description: