Exploring the Benefits of Data Augmentation in Math Word Problem Solving

dc.contributor.author Yigit,G.
dc.contributor.author Amasyali,M.F.
dc.contributor.other Computer Engineering
dc.contributor.other 05. Faculty of Engineering and Natural Sciences
dc.contributor.other 01. Kadir Has University
dc.date.accessioned 2024-06-23T21:39:21Z
dc.date.available 2024-06-23T21:39:21Z
dc.date.issued 2023
dc.description OpenCEMS - Connected Environment and Distributed Energy Data Management Solutions en_US
dc.description.abstract Math Word Problem (MWP) is a challenging Natural Language Processing (NLP) task. Existing MWP solvers have shown that current models need to generalize better and obtain higher performances. In this study, we aim to enrich existing MWP datasets with high-quality data, which may improve MWP solvers' performances. We propose several data augmentation methods by applying minor modifications to the problem texts and equations of English MWPs datasets which contain equations with one unknown. Extensive experiments on two MWPs datasets have shown that data created by augmented methods have considerably improved performance. Moreover, further increasing the training samples by combining the samples generated by the proposed augmentation methods provides further performance improvements. © 2023 IEEE. en_US
dc.description.sponsorship Türkiye Bilimsel ve Teknolojik Araştırma Kurumu, TÜBİTAK, (120E100) en_US
dc.identifier.citationcount 1
dc.identifier.doi 10.1109/INISTA59065.2023.10310417
dc.identifier.isbn 979-835033890-4
dc.identifier.scopus 2-s2.0-85179550570
dc.identifier.uri https://doi.org/10.1109/INISTA59065.2023.10310417
dc.identifier.uri https://hdl.handle.net/20.500.12469/5864
dc.language.iso en en_US
dc.publisher Institute of Electrical and Electronics Engineers Inc. en_US
dc.relation.ispartof 17th International Conference on INnovations in Intelligent SysTems and Applications, INISTA 2023 - Proceedings -- 17th International Conference on INnovations in Intelligent SysTems and Applications, INISTA 2023 -- 20 September 2023 through 23 September 2023 -- Hammamet -- 194596 en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Data Augmentation en_US
dc.subject Math Word Problems en_US
dc.subject Question Answering en_US
dc.title Exploring the Benefits of Data Augmentation in Math Word Problem Solving en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.institutional Yiğit, Gülsüm
gdc.author.scopusid 57215312808
gdc.author.scopusid 55664402200
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.description.department Kadir Has University en_US
gdc.description.departmenttemp Yigit G., Kadir Has University, Department of Computer Engineering, Istanbul, Turkey; Amasyali M.F., Yildiz Technical University, Department of Computer Engineering, Istanbul, Turkey en_US
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.identifier.openalex W4388894779
gdc.oaire.diamondjournal false
gdc.oaire.impulse 2.0
gdc.oaire.influence 2.64581E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 4.3815733E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.fwci 0.533
gdc.openalex.normalizedpercentile 0.39
gdc.opencitations.count 0
gdc.plumx.mendeley 4
gdc.plumx.scopuscites 2
gdc.scopus.citedcount 2
relation.isAuthorOfPublication 363c092e-cd4b-400e-8261-ca5b99b1bea9
relation.isAuthorOfPublication.latestForDiscovery 363c092e-cd4b-400e-8261-ca5b99b1bea9
relation.isOrgUnitOfPublication fd8e65fe-c3b3-4435-9682-6cccb638779c
relation.isOrgUnitOfPublication 2457b9b3-3a3f-4c17-8674-7f874f030d96
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery fd8e65fe-c3b3-4435-9682-6cccb638779c

Files