The use of statistical features for low-rate denial-of-service attack detection

dc.authorscopusid55807299700
dc.authorscopusid24328990900
dc.authorscopusid6603885574
dc.contributor.authorBaykaş, Tunçer
dc.contributor.authorBaykas, Tuncer
dc.contributor.authorAnarim, Emin
dc.date.accessioned2024-06-23T21:37:38Z
dc.date.available2024-06-23T21:37:38Z
dc.date.issued2024
dc.departmentKadir Has Universityen_US
dc.department-temp[Fuladi, Ramin] Ericsson Res, Istanbul, Turkiye; [Baykas, Tuncer] Kadir Has Univ, Istanbul, Turkiye; [Anarim, Emin] Bogazici Univ, Istanbul, Turkiyeen_US
dc.description.abstractLow-rate denial-of-service (LDoS) attacks can significantly reduce network performance. These attacks involve sending periodic high-intensity pulse data flows, sharing similar harmful effects with traditional DoS attacks. However, LDoS attacks have different attack modes, making detection particularly challenging. The high level of concealment associated with LDoS attacks makes them extremely difficult to identify using traditional DoS detection methods. In this paper, we explore the potential of using statistical features for LDoS attack detection. Our results demonstrate the promising performance of statistical features in detecting these attacks. Furthermore, through ANOVA, mutual information, RFE, and SHAP analysis, we find that entropy and L-moment-based features play a crucial role in LDoS attack detection. These findings provide valuable insights into utilizing statistical features enhancing network security, thereby improving the overall resilience and stability of networks against various types of attacks.en_US
dc.description.sponsorshipTrkiye Bilimsel ve Teknolojik Arascedil;timath;rma Kurumuen_US
dc.description.sponsorshipNo Statement Availableen_US
dc.identifier.citation0
dc.identifier.doi10.1007/s12243-024-01027-3
dc.identifier.issn0003-4347
dc.identifier.issn1958-9395
dc.identifier.scopus2-s2.0-85189434767
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1007/s12243-024-01027-3
dc.identifier.urihttps://hdl.handle.net/20.500.12469/5734
dc.identifier.wosWOS:001197350500002
dc.identifier.wosqualityN/A
dc.language.isoenen_US
dc.publisherSpringer int Publ Agen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectLow-rate DDoS attacken_US
dc.subjectFeature engineeringen_US
dc.subjectMachine learningen_US
dc.subjectExplainable AIen_US
dc.titleThe use of statistical features for low-rate denial-of-service attack detectionen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationab26f923-9923-42a2-b21e-2dd862cd92be
relation.isAuthorOfPublication.latestForDiscoveryab26f923-9923-42a2-b21e-2dd862cd92be

Files