Bitcoin Forecasting Using Arima and Prophet

dc.contributor.author Yenidoğan, Işıl
dc.contributor.author Çayır, Aykut
dc.contributor.author Kozan, Ozan
dc.contributor.author Dağ, Tugce
dc.contributor.author Arslan, Çiğdem
dc.date.accessioned 2019-06-27T08:01:06Z
dc.date.available 2019-06-27T08:01:06Z
dc.date.issued 2018
dc.description.abstract This paper presents all studies methodology and results about Bitcoin forecasting with PROPHET and ARIMA methods using R analytics platform. To find the most accurate forecast model the performance metrics of PROPHET and AMNIA methods are compared on the same dataset. The dataset selected 16r this study starts from May 2016 and ends in March 2018 which is the interval that Bitcoin values changing significantly against the other currencies. Data is prepared for time series analysis by performing data preprocessing steps such as time stamp conversion and feature selection. Although the time series analysis has a univariate characteristics it is aimed to include some additional variables to each model to improve the forecasting accuracy. Those additional variables are selected based on different correlation studies between cryptocurrencies and real currencies. The model selection for both ARIMA and PROPHET is done by using threefold splitting technique considering the time series characteristics of the dataset. The threefold splitting technique gave the optimum ratios for training validation and test sets. Filially two different models are created and compared in terms of performance metrics. Based on the extensive testing we see that PROPHET outperforms ARIMA by 0.94 to 0.68 in R-2 values. en_US]
dc.identifier.doi 10.1109/UBMK.2018.8566476 en_US
dc.identifier.isbn 978-1-5386-7893-0
dc.identifier.scopus 2-s2.0-85060636848 en_US
dc.identifier.uri https://hdl.handle.net/20.500.12469/255
dc.identifier.uri https://doi.org/10.1109/UBMK.2018.8566476
dc.language.iso en en_US
dc.publisher IEEE en_US
dc.relation.ispartof 2018 3rd International Conference on Computer Science and Engineering (UBMK)
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Bitcoin en_US
dc.subject Farcasting en_US
dc.title Bitcoin Forecasting Using Arima and Prophet en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.institutional Yenidoğan, Işıl en_US
gdc.author.institutional Çayır, Aykut en_US
gdc.author.institutional Kozan, Ozan en_US
gdc.author.institutional Dağ, Tuğçe en_US
gdc.author.institutional Arslan, Çiğdem en_US
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C3
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.collaboration.industrial false
gdc.description.department Fakülteler, İşletme Fakültesi, Yönetim Bilişim Sistemleri Bölümü en_US
gdc.description.endpage 624
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.startpage 621 en_US
gdc.identifier.openalex W2903931026
gdc.identifier.wos WOS:000459847400119 en_US
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 23.0
gdc.oaire.influence 7.759829E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Farcasting
gdc.oaire.keywords Bitcoin
gdc.oaire.popularity 5.1204243E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 13.46627566
gdc.openalex.normalizedpercentile 0.99
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 55
gdc.plumx.crossrefcites 2
gdc.plumx.mendeley 189
gdc.plumx.scopuscites 97
gdc.relation.journal 3rd International Conference on Computer Science and Engineering (UBMK)
gdc.scopus.citedcount 97
gdc.virtual.author Yenidoğan Dağ, Işıl
gdc.wos.citedcount 54
relation.isAuthorOfPublication b095370a-50e0-4855-a720-bf27c9cf16a6
relation.isAuthorOfPublication.latestForDiscovery b095370a-50e0-4855-a720-bf27c9cf16a6
relation.isOrgUnitOfPublication ff62e329-217b-4857-88f0-1dae00646b8c
relation.isOrgUnitOfPublication acb86067-a99a-4664-b6e9-16ad10183800
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery ff62e329-217b-4857-88f0-1dae00646b8c

Files