Automatic Adaptation of Hypermutation Rates for Multimodal Optimisation

dc.contributor.authorCorus, Dogan
dc.contributor.authorOliveto, Pietro S.
dc.contributor.authorYazdani, Donya
dc.date.accessioned2023-10-19T15:11:33Z
dc.date.available2023-10-19T15:11:33Z
dc.date.issued2021
dc.department-temp[Corus, Dogan] Kadir Has Univ, Istanbul, Turkey; [Oliveto, Pietro S.] Univ Sheffield, Sheffield, S Yorkshire, England; [Yazdani, Donya] Aberystwyth Univ, Aberystwyth, Dyfed, Walesen_US
dc.description16th ACM/SIGEVO Conference on Foundations of Genetic Algorithms (FOGA) -- SEP 06-08, 2021 -- Vorarlberg Univ Appl Sci, ELECTR NETWORKen_US
dc.description.abstractPrevious work has shown that in Artificial Immune Systems (AIS) the best static mutation rates to escape local optima with the ageing operator are far from the optimal ones to do so via large hypermutations and vice-versa. In this paper we propose an AIS that automatically adapts the mutation rate during the run to make good use of both operators. We perform rigorous time complexity analyses for standard multimodal benchmark functions with significant characteristics and prove that our proposed algorithm can learn to adapt the mutation rate appropriately such that both ageing and hypermutation are effective when they are most useful for escaping local optima. In particular, the algorithm provably adapts the mutation rate such that it is efficient for the problems where either operator has been proven to be effective in the literature.en_US
dc.description.sponsorshipAssoc Comp Machinery,ACM SIGEVOen_US
dc.identifier.citation9
dc.identifier.doi10.1145/3450218.3477305en_US
dc.identifier.isbn978-1-4503-8352-3
dc.identifier.scopus2-s2.0-85114941882en_US
dc.identifier.scopusqualityN/A
dc.identifier.urihttps://doi.org/10.1145/3450218.3477305
dc.identifier.urihttps://hdl.handle.net/20.500.12469/5086
dc.identifier.wosWOS:000748910300004en_US
dc.identifier.wosqualityN/A
dc.institutionauthorÇörüş, Doğan
dc.khas20231019-WoSen_US
dc.language.isoenen_US
dc.publisherAssoc Computing Machineryen_US
dc.relation.ispartofProceedings of The 16th Acm/Sigevo Conference on Foundations of Genetic Algorithms (Foga'21)en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectGenetic AlgorithmsEn_Us
dc.subjectSearchEn_Us
dc.subjectrandomized search heuristicsen_US
dc.subjectartificial immune systemsen_US
dc.subjectevolutionary algorithmsen_US
dc.subjectApproximationsEn_Us
dc.subjecthypermutationsen_US
dc.subjectageingen_US
dc.subjectGenetic Algorithms
dc.subjectmultimodal optimizationen_US
dc.subjectSearch
dc.subjectparameter adaptationen_US
dc.subjectApproximations
dc.subjectruntime analysisen_US
dc.titleAutomatic Adaptation of Hypermutation Rates for Multimodal Optimisationen_US
dc.typeConference Objecten_US
dspace.entity.typePublication
relation.isAuthorOfPublication7342534c-06be-40f2-9933-f1249a97ad3a
relation.isAuthorOfPublication.latestForDiscovery7342534c-06be-40f2-9933-f1249a97ad3a

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
5086.pdf
Size:
715.07 KB
Format:
Adobe Portable Document Format
Description:
Tam Metin / Full Text