Ailesel ALS Tedavisi için Mutant ve Doğal Tip SOD1 Enzimlerinin Yanlış Katlanmasına ve Agregasyonuna Karşı İlaç Adaylarının In Silico Taraması
No Thumbnail Available
Date
2025
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
Amyotrofik Lateral Skleroz (ALS), genellikle süperoksit dismutaz 1 (SOD1) enzimindeki anormalliklerle bağlantılı nörodejeneratif bir durumdur. Bu tez, vahşi tip (WT) ve terapötik olabilecek üç SOD1 mutantının hem aktif bölgesini hem de dimer arayüzlerini hedefleyen yeni modülatörleri keşfetmeyi amaçlayan kapsamlı bir in silico analizi açıklamaktadır. Her biri yaklaşık 100.000 ligand içeren protein bölgesi kombinasyonu için bir tane olmak üzere sekiz Yapı Tabanlı Sanal Tarama (SBVS) gerçekleştirildi. Kalıntı düzeyinde yapısal çalışmalara dayalı olarak eş zamanlı olarak on iki özel tasarlanmış tripeptit taklit eden iskele oluşturuldu. Bu ligandlar çizildi, BioVia Discovery Studio ile enerji en aza indirildi ve sekiz protein modelinin tümünde hedeflendi. On altı taramanın her birinden, en iyi performans gösteren ligand-protein kombinasyonu, 100 nanosaniye moleküler dinamik (MD) simülasyonları için apo muadili ile birlikte toplam yirmi simülasyon için seçildi. Simülasyon çıktısı RMSD, RMSF ve Rg metrikleri kullanılarak yapısal ve işlevsel kararlılık açısından değerlendirildi. Ligand'a bağlı sistemler, konformasyonel etkileri belirlemek için apo formlarıyla karşılaştırıldı. Rasyonel ligand tasarımı, yüksek verimli sanal tarama ve MD simülasyonlarını içeren bu bütünleştirici strateji, çok sayıda ilginç adayın keşfedilmesiyle sonuçlandı. Bu bileşikler, olası fonksiyonel inhibisyon ile uyumlu bağlanma ve dinamik davranış gösterir ve hücresel modellerde daha fazla doğrulama için mükemmel adaylardır. Çalışma, ALS ortamında SOD1'i hedefleyen tedavi ipuçlarını rasyonel olarak belirlemeye yardımcı olur. Anahtar Sözcükler: Nörodejeneratif hastalıklar, ALS, SOD1, Yapı Tabanlı Sanal Tarama, Moleküler Yerleştirme, Moleküler Dinamik Simülasyonlar
Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative condition that is usually linked to abnormalities in the superoxide dismutase 1 enzyme. This thesis describes a thorough in silico analysis aiming at discovering new modulators that target both the active site and dimer interfaces of wild-type (WT) and three therapeutically relevant SOD1 mutants. Eight Structure-Based Virtual Screenings (SBVS) were carried out, one for each protein-region combination, with each including roughly 100,000 ligands. Twelve custom-designed tripeptide-mimicking scaffolds were created concurrently based on residue-level structural studies. These ligands were drawn, energy-minimized with BioVia Discovery Studio, and targeted-screened across all eight protein models. From each of the sixteen screens (8 active site, 8 interface), the best-performing ligand-protein combination was chosen for 100-nanosecond molecular dynamics (MD) simulations, along with its apo counterpart, for a total of twenty simulations. The trajectories were evaluated for structural and functional stability using the RMSD, RMSF, and Rg metrics. Ligand-bound systems were compared to their apo forms to determine conformational effects. This integrative strategy, which included rational ligand design, high-throughput virtual screening, and MD simulations, resulted in the discovery of numerous interesting candidates. These compounds show binding and dynamic behavior compatible with possible functional inhibition, and they are excellent candidates for further validation in cellular models. This work helps to rationally identify treatment leads that target SOD1 in the setting of ALS. Keywords: Neurodegenerative diseases, ALS, SOD1, Structure-Based Virtual Screening, Molecular Docking, Molecular Dynamic Simulations
Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative condition that is usually linked to abnormalities in the superoxide dismutase 1 enzyme. This thesis describes a thorough in silico analysis aiming at discovering new modulators that target both the active site and dimer interfaces of wild-type (WT) and three therapeutically relevant SOD1 mutants. Eight Structure-Based Virtual Screenings (SBVS) were carried out, one for each protein-region combination, with each including roughly 100,000 ligands. Twelve custom-designed tripeptide-mimicking scaffolds were created concurrently based on residue-level structural studies. These ligands were drawn, energy-minimized with BioVia Discovery Studio, and targeted-screened across all eight protein models. From each of the sixteen screens (8 active site, 8 interface), the best-performing ligand-protein combination was chosen for 100-nanosecond molecular dynamics (MD) simulations, along with its apo counterpart, for a total of twenty simulations. The trajectories were evaluated for structural and functional stability using the RMSD, RMSF, and Rg metrics. Ligand-bound systems were compared to their apo forms to determine conformational effects. This integrative strategy, which included rational ligand design, high-throughput virtual screening, and MD simulations, resulted in the discovery of numerous interesting candidates. These compounds show binding and dynamic behavior compatible with possible functional inhibition, and they are excellent candidates for further validation in cellular models. This work helps to rationally identify treatment leads that target SOD1 in the setting of ALS. Keywords: Neurodegenerative diseases, ALS, SOD1, Structure-Based Virtual Screening, Molecular Docking, Molecular Dynamic Simulations
Description
Keywords
Biyoloji, Kimya, Biology, Chemistry
Turkish CoHE Thesis Center URL
Fields of Science
Citation
WoS Q
Scopus Q
Source
Volume
Issue
Start Page
End Page
68
Collections
Google Scholar™
Sustainable Development Goals
5
GENDER EQUALITY

8
DECENT WORK AND ECONOMIC GROWTH

9
INDUSTRY, INNOVATION AND INFRASTRUCTURE

10
REDUCED INEQUALITIES
