An Adaptive Affinity Matrix Optimization for Locality Preserving Projection Via Heuristic Methods for Hyperspectral Image Analysis

dc.contributor.author Taşkın, Gülşen
dc.contributor.author Ceylan, Oğuzhan
dc.contributor.author Ceylan, Oğuzhan
dc.contributor.other Management Information Systems
dc.date.accessioned 2020-12-12T09:22:46Z
dc.date.available 2020-12-12T09:22:46Z
dc.date.issued 2019
dc.department Fakülteler, İşletme Fakültesi, Yönetim Bilişim Sistemleri Bölümü en_US
dc.description.abstract Locality preserving projection (LPP) has been often used as a dimensionality reduction tool for hyperspectral image analysis especially in the context of classification since it provides a projection matrix for embedding test samples to low dimensional space. However, the performance of LPP heavily depends on the optimization of two parameters of the graph affinity matrix: k-nearest neighbor and heat kernel width, when one considers an isotropic kernel. These two parameters might be optimally chosen simply based on a grid search. In case of using a generalized heat kernel where each feature is separately weighted by a kernel width, the number of parameters that need to be optimized is related to the number of features of the dataset, which might not be very easy to tune. Therefore, in this article, we propose to use heuristic methods, including genetic algorithm (GA), harmony search (HS), and particle swarm optimization (PSO), to explore the effects of the heat kernel parameters aiming to analyze the embedding quality of LPP's projection in terms of various aspects, including 1-NN classification accuracy, locality preserving power, and quality of the graph affinity matrix. The results obtained with the experiments on three hyperspectral datasets show that HS performs better than GA and PSO in optimizing the parameters of the affinity matrix, and the generalized heat kernel achieves better performance than the isotropic kernel. Additionally, a feature selection application is performed by using the kernel width of the generalized heat kernel for each heuristic method. The results show that very promising results are obtained in comparison with the state-of-the-art feature selection methods. en_US
dc.description.sponsorship Tubitak en_US
dc.identifier.citationcount 4
dc.identifier.doi 10.1109/JSTARS.2019.2947355 en_US
dc.identifier.endpage 4697 en_US
dc.identifier.issn 1939-1404 en_US
dc.identifier.issn 2151-1535 en_US
dc.identifier.issn 1939-1404
dc.identifier.issn 2151-1535
dc.identifier.issue 12 en_US
dc.identifier.scopus 2-s2.0-85079348756 en_US
dc.identifier.scopusquality Q1
dc.identifier.startpage 4690 en_US
dc.identifier.uri https://hdl.handle.net/20.500.12469/3518
dc.identifier.uri https://doi.org/10.1109/JSTARS.2019.2947355
dc.identifier.volume 12 en_US
dc.identifier.wos WOS:000515698700001 en_US
dc.identifier.wosquality Q2
dc.institutionauthor Ceylan, Oğuzhan en_US
dc.language.iso en en_US
dc.publisher IEEE-Inst Electrıcal Electronıcs Engıneers Inc en_US
dc.relation.journal IEEE Journal of Selected Topıcs in Applıed Earth Observatıons and Remote Sensıng en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 9
dc.subject Dimensionality reduction' en_US
dc.subject Genetic algorithms en_US
dc.subject Particle swarm optimization en_US
dc.subject Feature extraction en_US
dc.subject Optimization en_US
dc.subject Dimensionality reduction en_US
dc.subject Genetic algorithm en_US
dc.subject Harmony search en_US
dc.subject Manifold learning en_US
dc.subject Particle swarm optimization en_US
dc.title An Adaptive Affinity Matrix Optimization for Locality Preserving Projection Via Heuristic Methods for Hyperspectral Image Analysis en_US
dc.type Article en_US
dc.wos.citedbyCount 6
dspace.entity.type Publication
relation.isAuthorOfPublication b80c3194-906c-4e78-a54c-e3cd1effc970
relation.isAuthorOfPublication.latestForDiscovery b80c3194-906c-4e78-a54c-e3cd1effc970
relation.isOrgUnitOfPublication ff62e329-217b-4857-88f0-1dae00646b8c
relation.isOrgUnitOfPublication.latestForDiscovery ff62e329-217b-4857-88f0-1dae00646b8c

Files