Revealing Dynamics, Communities, and Criticality from Data

dc.contributor.authorEroğlu, Deniz
dc.contributor.authorTanzi, Matteo
dc.contributor.authorvan Strien, Sebastian
dc.contributor.authorPereira, Tiago
dc.date.accessioned2020-06-18T09:15:19Z
dc.date.available2020-06-18T09:15:19Z
dc.date.issued2020
dc.departmentFakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Biyoinformatik ve Genetik Bölümüen_US
dc.description.abstractComplex systems such as ecological communities and neuron networks are essential parts of our everyday lives. These systems are composed of units which interact through intricate networks. The ability to predict sudden changes in the dynamics of these networks, known as critical transitions, from data is important to avert disastrous consequences of major disruptions. Predicting such changes is a major challenge as it requires forecasting the behavior for parameter ranges for which no data on the system are available. We address this issue for networks with weak individual interactions and chaotic local dynamics. We do this by building a model network, termed an effective network, consisting of the underlying local dynamics and a statistical description of their interactions. We show that behavior of such networks can be decomposed in terms of an emergent deterministic component and a fluctuation term. Traditionally, such fluctuations are filtered out. However, as we show, they are key to accessing the interaction structure. We illustrate this approach on synthetic time series of realistic neuronal interaction networks of the cat cerebral cortex and on experimental multivariate data of optoelectronic oscillators. We reconstruct the community structure by analyzing the stochastic fluctuations generated by the network and predict critical transitions for coupling parameters outside the observed range.en_US
dc.description.sponsorshipFundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP European Research Council (ERC) Turkiye Bilimsel ve Teknolojik Araştırma Kurumu (TUBITAK) Serrapilheira Instituteen_US
dc.identifier.citation14
dc.identifier.doi10.1103/PhysRevX.10.021047en_US
dc.identifier.issn2160-3308en_US
dc.identifier.issn2160-3308
dc.identifier.issue2en_US
dc.identifier.scopus2-s2.0-85089914079en_US
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://hdl.handle.net/20.500.12469/2927
dc.identifier.urihttps://doi.org/10.1103/PhysRevX.10.021047
dc.identifier.volume10en_US
dc.identifier.wosWOS:000537193700001en_US
dc.identifier.wosqualityQ1
dc.institutionauthorEroğlu, Denizen_US
dc.language.isoenen_US
dc.publisherAmer Physical Socen_US
dc.relation.journalPhysical Review Xen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectBrain networksen_US
dc.subjectSynchronizationen_US
dc.subjectConnectivityen_US
dc.subjectOrganizationen_US
dc.subjectMotionen_US
dc.titleRevealing Dynamics, Communities, and Criticality from Dataen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication5bae555f-a8aa-4b95-bcfe-54cc47812e13
relation.isAuthorOfPublication.latestForDiscovery5bae555f-a8aa-4b95-bcfe-54cc47812e13

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Revealing Dynamics, Communities, and Criticality from Data.pdf
Size:
4.06 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: