Revealing Dynamics, Communities, and Criticality From Data

gdc.relation.journal Physical Review X en_US
dc.contributor.author Eroğlu, Deniz
dc.contributor.author Tanzi, Matteo
dc.contributor.author van Strien, Sebastian
dc.contributor.author Pereira, Tiago
dc.contributor.other Molecular Biology and Genetics
dc.contributor.other 05. Faculty of Engineering and Natural Sciences
dc.contributor.other 01. Kadir Has University
dc.date.accessioned 2020-06-18T09:15:19Z
dc.date.available 2020-06-18T09:15:19Z
dc.date.issued 2020
dc.description.abstract Complex systems such as ecological communities and neuron networks are essential parts of our everyday lives. These systems are composed of units which interact through intricate networks. The ability to predict sudden changes in the dynamics of these networks, known as critical transitions, from data is important to avert disastrous consequences of major disruptions. Predicting such changes is a major challenge as it requires forecasting the behavior for parameter ranges for which no data on the system are available. We address this issue for networks with weak individual interactions and chaotic local dynamics. We do this by building a model network, termed an effective network, consisting of the underlying local dynamics and a statistical description of their interactions. We show that behavior of such networks can be decomposed in terms of an emergent deterministic component and a fluctuation term. Traditionally, such fluctuations are filtered out. However, as we show, they are key to accessing the interaction structure. We illustrate this approach on synthetic time series of realistic neuronal interaction networks of the cat cerebral cortex and on experimental multivariate data of optoelectronic oscillators. We reconstruct the community structure by analyzing the stochastic fluctuations generated by the network and predict critical transitions for coupling parameters outside the observed range. en_US
dc.description.sponsorship Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP European Research Council (ERC) Turkiye Bilimsel ve Teknolojik Araştırma Kurumu (TUBITAK) Serrapilheira Institute en_US
dc.identifier.citationcount 14
dc.identifier.doi 10.1103/PhysRevX.10.021047 en_US
dc.identifier.issn 2160-3308 en_US
dc.identifier.issn 2160-3308
dc.identifier.scopus 2-s2.0-85089914079 en_US
dc.identifier.uri https://hdl.handle.net/20.500.12469/2927
dc.identifier.uri https://doi.org/10.1103/PhysRevX.10.021047
dc.language.iso en en_US
dc.publisher Amer Physical Soc en_US
dc.relation.ispartof Physical Review X
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Brain networks en_US
dc.subject Synchronization en_US
dc.subject Connectivity en_US
dc.subject Organization en_US
dc.subject Motion en_US
dc.title Revealing Dynamics, Communities, and Criticality From Data en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Eroğlu, Deniz en_US
gdc.author.institutional Eroğlu, Deniz
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Biyoinformatik ve Genetik Bölümü en_US
gdc.description.issue 2 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.volume 10 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W3179955011
gdc.identifier.wos WOS:000537193700001 en_US
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.downloads 0
gdc.oaire.impulse 8.0
gdc.oaire.influence 3.146298E-9
gdc.oaire.isgreen true
gdc.oaire.keywords MOTION
gdc.oaire.keywords Brain networks
gdc.oaire.keywords QC1-999
gdc.oaire.keywords Physics, Multidisciplinary
gdc.oaire.keywords 0204 Condensed Matter Physics
gdc.oaire.keywords FOS: Physical sciences
gdc.oaire.keywords ORGANIZATION
gdc.oaire.keywords Dynamical Systems (math.DS)
gdc.oaire.keywords Synchronization
gdc.oaire.keywords 530
gdc.oaire.keywords Motion
gdc.oaire.keywords CONNECTIVITY
gdc.oaire.keywords 0201 Astronomical and Space Sciences
gdc.oaire.keywords FOS: Mathematics
gdc.oaire.keywords [NLIN] Nonlinear Sciences [physics]
gdc.oaire.keywords Mathematics - Dynamical Systems
gdc.oaire.keywords 0206 Quantum Physics
gdc.oaire.keywords Connectivity
gdc.oaire.keywords Multidisciplinary
gdc.oaire.keywords Science & Technology
gdc.oaire.keywords Physics
gdc.oaire.keywords 500
gdc.oaire.keywords Nonlinear Sciences - Chaotic Dynamics
gdc.oaire.keywords Nonlinear Sciences - Adaptation and Self-Organizing Systems
gdc.oaire.keywords BRAIN NETWORKS
gdc.oaire.keywords Physical Sciences
gdc.oaire.keywords SYNCHRONIZATION
gdc.oaire.keywords Chaotic Dynamics (nlin.CD)
gdc.oaire.keywords Adaptation and Self-Organizing Systems (nlin.AO)
gdc.oaire.keywords Organization
gdc.oaire.popularity 1.28909E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 01 natural sciences
gdc.oaire.sciencefields 0103 physical sciences
gdc.oaire.views 3
gdc.openalex.fwci 1.032
gdc.openalex.normalizedpercentile 0.81
gdc.opencitations.count 12
gdc.plumx.mendeley 35
gdc.plumx.scopuscites 22
gdc.scopus.citedcount 22
gdc.wos.citedcount 21
relation.isAuthorOfPublication 5bae555f-a8aa-4b95-bcfe-54cc47812e13
relation.isAuthorOfPublication.latestForDiscovery 5bae555f-a8aa-4b95-bcfe-54cc47812e13
relation.isOrgUnitOfPublication 71ce8622-7449-4a6a-8fad-44d881416546
relation.isOrgUnitOfPublication 2457b9b3-3a3f-4c17-8674-7f874f030d96
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery 71ce8622-7449-4a6a-8fad-44d881416546

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Revealing Dynamics, Communities, and Criticality from Data.pdf
Size:
4.06 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: