A Computerized Recognition System for the Home-Based Physiotherapy Exercises Using an Rgbd Camera

gdc.relation.journal IEEE Transactions on Neural Systems and Rehabilitation Engineering en_US
dc.contributor.author Ar, İlktan
dc.contributor.author Akgül, Yusuf Sinan
dc.contributor.other 01. Kadir Has University
dc.date.accessioned 2019-06-27T08:02:45Z
dc.date.available 2019-06-27T08:02:45Z
dc.date.issued 2014
dc.description.abstract Computerized recognition of the home based physiotherapy exercises has many benefits and it has attracted considerable interest among the computer vision community. However most methods in the literature view this task as a special case of motion recognition. In contrast we propose to employ the three main components of a physiotherapy exercise (the motion patterns the stance knowledge and the exercise object) as different recognition tasks and embed them separately into the recognition system. The low level information about each component is gathered using machine learning methods. Then we use a generative Bayesian network to recognize the exercise types by combining the information from these sources at an abstract level which takes the advantage of domain knowledge for a more robust system. Finally a novel postprocessing step is employed to estimate the exercise repetitions counts. The performance evaluation of the system is conducted with a new dataset which contains RGB (red green and blue) and depth videos of home-based exercise sessions for commonly applied shoulder and knee exercises. The proposed system works without any body-part segmentation bodypart tracking joint detection and temporal segmentation methods. In the end favorable exercise recognition rates and encouraging results on the estimation of repetition counts are obtained. en_US]
dc.identifier.citationcount 34
dc.identifier.doi 10.1109/TNSRE.2014.2326254 en_US
dc.identifier.issn 1534-4320 en_US
dc.identifier.issn 1558-0210 en_US
dc.identifier.issn 1534-4320
dc.identifier.issn 1558-0210
dc.identifier.scopus 2-s2.0-84912142902 en_US
dc.identifier.uri https://hdl.handle.net/20.500.12469/678
dc.identifier.uri https://doi.org/10.1109/TNSRE.2014.2326254
dc.language.iso en en_US
dc.publisher IEEE en_US
dc.relation.ispartof IEEE Transactions on Neural Systems and Rehabilitation Engineering
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Bayesian network en_US
dc.subject Estimation of repetition count en_US
dc.subject Exercise recognition en_US
dc.subject Home-based physiotherapy en_US
dc.title A Computerized Recognition System for the Home-Based Physiotherapy Exercises Using an Rgbd Camera en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Ar, İlktan en_US
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü en_US
gdc.description.endpage 1171
gdc.description.issue 6
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 1160 en_US
gdc.description.volume 22 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W2032984112
gdc.identifier.pmid 24860037 en_US
gdc.identifier.wos WOS:000345573500007 en_US
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 12.0
gdc.oaire.influence 7.7062055E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Exercise recognition
gdc.oaire.keywords Color
gdc.oaire.keywords Monitoring, Ambulatory
gdc.oaire.keywords Reproducibility of Results
gdc.oaire.keywords Biofeedback, Psychology
gdc.oaire.keywords Signal Processing, Computer-Assisted
gdc.oaire.keywords Equipment Design
gdc.oaire.keywords Home-based physiotherapy
gdc.oaire.keywords Sensitivity and Specificity
gdc.oaire.keywords Telemedicine
gdc.oaire.keywords Exercise Therapy
gdc.oaire.keywords Pattern Recognition, Automated
gdc.oaire.keywords Estimation of repetition count
gdc.oaire.keywords Equipment Failure Analysis
gdc.oaire.keywords Self Care
gdc.oaire.keywords Bayesian network
gdc.oaire.keywords Imaging, Three-Dimensional
gdc.oaire.keywords Artificial Intelligence
gdc.oaire.keywords Humans
gdc.oaire.keywords Whole Body Imaging
gdc.oaire.keywords Exercise
gdc.oaire.popularity 3.0305237E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.openalex.fwci 3.627
gdc.openalex.normalizedpercentile 0.96
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 55
gdc.plumx.crossrefcites 32
gdc.plumx.mendeley 143
gdc.plumx.pubmedcites 12
gdc.plumx.scopuscites 60
gdc.scopus.citedcount 60
gdc.wos.citedcount 47
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery b20623fc-1264-4244-9847-a4729ca7508c

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
A Computerized Recognition System for the Home-Based Physiotherapy Exercises Using an RGBD Camera.pdf
Size:
2.92 MB
Format:
Adobe Portable Document Format
Description: