Artificial Neural Network Based Sparse Channel Estimation for Ofdm Systems

dc.contributor.advisor Şenol, Habib en_US
dc.contributor.advisor Özmen, Atilla en_US
dc.contributor.author Tahir, Abdur Rehman Bin
dc.contributor.author Özmen, Atilla
dc.contributor.other Electrical-Electronics Engineering
dc.date.accessioned 2020-06-03T09:20:19Z en_US
dc.date.available 2020-06-03T09:20:19Z en_US
dc.date.issued 2017 en_US
dc.department Enstitüler, Lisansüstü Eğitim Enstitüsü, Elektronik Mühendisliği Ana Bilim Dalı en_US
dc.department-temp Kadir Has University : Graduate School of Science and Engineering: Electronics Engineering en_US
dc.description.abstract In order to increase the communication quality in frequency selective fading channel environment, orthogonal frequency division multiplexing (OFDM) systems are used to combat inter-symbol-interference (ISI). In this thesis, a channel estimation scheme for the OFDM system in the presence of sparse multipath channel is studied. The channel estimation is done by using the artificial neural networks (ANNs) with Resilient Backpropagation training algorithm. This technique uses the learning capability of artificial neural networks. By means of this feature we show how to obtain a channel estimate and how it allows the proposed technique to be less computationally complex; as there is no need for any matrix inversions. This proposed method is compared with the Matching Pursuit (MP) algorithm that is well known estimation technique for sparse channels. The results show that the ANN based channel estimate is computationally simpler and a small number of pilots are required to get a better estimate of the channel especially in low SNR levels. With this setting, the proposed algorithm leads to a better system throughput. en_US
dc.description.abstract Frekans seçici sönümlemeli kanal ortamında, haberleşme kalitesini arttırmak için dik frekans bölmeli çoğullama (OFDM) sistemleri semboller arası girişimle baş edebilmek için kullanılmaktadır. Bu tezde, seyrek çok-yollu kanalın bulunması durumunda, OFDM sistemlerinde kanal kestirimi çalışılmıştır. Kanal kestirimi, Esnek Geri Yayılım eğitim algoritması kullanan yapay sinir ağları (YSA) ile gerçekleştirilmiştir. Bu teknik yapay sinir ağlarının öğrenme yetisini kullanmaktadır. Bu özellik sayesinde, kanal kestiriminin nasıl yapıldığı ve önerilen yöntemin herhangi bir matris tersine ihtiyaç duymadan daha az hesaplama karmaşıklığına nasıl sahip olabildiği gösterilmektedir. Önerilen bu yöntem, en uyguna yakın Eşleştirme Arama (MP) algoritması ile karşılaştırılmıştır. Sonuçlar, özellikle düşük SNR seviyelerinde daha iyi kanal kestirimi elde edebilmek için, YSA tabanlı kanal kestiriminin hesaplama kolaylığı sağladığını ve daha az sayıda pilot veriye ihtiyaç duyulduğunu göstermiştir. Böylece, önerilen yöntemin daha iyi bir sistem çıkışına olanak sağladığı gösterilmiştir. en_US
dc.identifier.uri https://hdl.handle.net/20.500.12469/2855
dc.identifier.yoktezid 458908 en_US
dc.language.iso en en_US
dc.publisher Kadir Has Üniversitesi en_US
dc.relation.publicationcategory Tez en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Orthogonal Frequency Division Multiplexing (OFDM) en_US
dc.subject Sparse Channel Estimation en_US
dc.subject Matching Pursuit Algorithm en_US
dc.subject Artificial Neural Network (ANN) en_US
dc.subject Dik Frekans Bölmeli Çoğullama (OFDM) en_US
dc.subject Seyrek Kanal Kestirimi en_US
dc.subject Eşleştirme Arama Algoritması en_US
dc.subject Yapay Sinir Ağları en_US
dc.title Artificial Neural Network Based Sparse Channel Estimation for Ofdm Systems en_US
dc.type Master Thesis en_US
dspace.entity.type Publication
relation.isAuthorOfPublication cf8f9e05-3f89-4ab6-af78-d0937210fb77
relation.isAuthorOfPublication.latestForDiscovery cf8f9e05-3f89-4ab6-af78-d0937210fb77
relation.isOrgUnitOfPublication 12b0068e-33e6-48db-b92a-a213070c3a8d
relation.isOrgUnitOfPublication.latestForDiscovery 12b0068e-33e6-48db-b92a-a213070c3a8d

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Artificial Neural Network Based Sparse Channel Estimation For OFDM Systems.pdf
Size:
1.28 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections