Energy Efcient Downlink Resource Allocation in Cellular Iot Supported H-Crans

Loading...
Thumbnail Image

Date

2021

Journal Title

Journal ISSN

Volume Title

Publisher

Institute of Electrical and Electronics Engineers Inc.

Open Access Color

Green Open Access

No

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Top 10%
Influence
Top 10%
Popularity
Top 10%

Research Projects

Journal Issue

Abstract

The cloud computing supported heterogeneous cloud radio access network (H-CRAN) is one of the promising solutions to support cellular IoT devices with the legacy cellular systems. However, the dense deployment of small cells with fractional frequency reuse in orthogonal frequency division multiple access (OFDMA) based H-CRANs increases intra- and inter-cell interference, turning the resource allocation into a more challenging problem. In general, the macro cell users are considered as the legacy users, whereas the cellular IoT devices and small cell users share the macro cell users resource blocks in an underlaid approach. In this paper, we investigate an underlaid approach of resource allocation for small and macro cell users to improve the energy efficiency (EE) in H-CRANs. The solution approaches are derived with the Dinkelbach, Lagrange and Alternating Direction Method of Multipliers (ADMM) methods by considering maximum power, resource block allocation, fronthaul capacity and quality of service (QoS) constraints of macro cell users. A two-step energy efficient underlaid cellular IoT (UCIoT) supported H-CRAN method is proposed and evaluated with overlaid cellular IoT (OC-IoT) supported H-CRAN and underlaid H-CRAN without cellular IoT devices. The proposed method is evaluated in terms of energy efficiency and the Jain's fairness index, considering the effect of number of cellular IoT density in each small cell of the H-CRAN. The simulation results demonstrate the effectiveness of the proposed approach compared to earlier approaches.

Description

Keywords

Cellular IoT Systems, Energy Efficiency, H-CRAN, OFDMA, Power Allocation, Resource Block Allocation, OFDMA, Resource Block Allocation, Energy Efficiency, H-CRAN, Power Allocation, Cellular IoT Systems

Turkish CoHE Thesis Center URL

Fields of Science

0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology

Citation

WoS Q

Q1

Scopus Q

Q1
OpenCitations Logo
OpenCitations Citation Count
23

Source

IEEE Transactions on Vehicular Technology

Volume

70

Issue

Start Page

5803

End Page

5816
PlumX Metrics
Citations

CrossRef : 4

Scopus : 31

Captures

Mendeley Readers : 6

SCOPUS™ Citations

31

checked on Feb 01, 2026

Web of Science™ Citations

23

checked on Feb 01, 2026

Page Views

5

checked on Feb 01, 2026

Downloads

145

checked on Feb 01, 2026

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
2.01699131

Sustainable Development Goals

3

GOOD HEALTH AND WELL-BEING
GOOD HEALTH AND WELL-BEING Logo

7

AFFORDABLE AND CLEAN ENERGY
AFFORDABLE AND CLEAN ENERGY Logo

9

INDUSTRY, INNOVATION AND INFRASTRUCTURE
INDUSTRY, INNOVATION AND INFRASTRUCTURE Logo

11

SUSTAINABLE CITIES AND COMMUNITIES
SUSTAINABLE CITIES AND COMMUNITIES Logo

15

LIFE ON LAND
LIFE ON LAND Logo

17

PARTNERSHIPS FOR THE GOALS
PARTNERSHIPS FOR THE GOALS Logo